1. Bioinformatic analysis of gene expression profiles of pituitary gonadotroph adenomas
    Ziming Hou et al, 2017, Oncology Letters CrossRef
  2. CircNFIX promotes progression of pituitary adenoma via CCNB1 by sponging miR-34a -5p
    Jianhua Cheng et al, 2021, Molecular and Cellular Endocrinology CrossRef
  3. Hydrogel-fiber-mesh-based 3D cell cultures: A new method for studying pituitary tumors
    Wooju Jeong et al, 2024, Smart Materials in Medicine CrossRef
  4. CCNB1 affects cavernous sinus invasion in pituitary adenomas through the epithelial–mesenchymal transition
    Bin Li et al, 2019, Journal of Translational Medicine CrossRef
  5. Upregulation of cyclin B1 plays potential roles in the invasiveness of pituitary adenomas
    Peng Zhao et al, 2017, Journal of Clinical Neuroscience CrossRef
  6. Non-coding RNAs and exosomal non-coding RNAs in pituitary adenoma
    Neda Rahimian et al, 2023, Pathology - Research and Practice CrossRef
  7. Portrait of Tissue-Specific Coexpression Networks of Noncoding RNAs (miRNA and lncRNA) and mRNAs in Normal Tissues
    Claudia Cava et al, 2019, Computational and Mathematical Methods in Medicine CrossRef
  8. Genome-wide DNA Methylation Differences in Nonfunctioning Pituitary Adenomas With and Without Postsurgical Progression
    Tobias Hallén et al, 2022, The Journal of Clinical Endocrinology & Metabolism CrossRef
  9. Differenze nei pattern di metilazione del DNA negli adenomi ipofisari non secernenti con e senza progressione dopo chirurgia
    Andrea Lania, 2022, L'Endocrinologo CrossRef
  10. LncRNA HOTTIP leads to osteoarthritis progression via regulating miR-663a/ Fyn-related kinase axis
    Xianwei He et al, 2021, BMC Musculoskeletal Disorders CrossRef