1. shRNA targeting Bmi-1 sensitizes CD44+ nasopharyngeal cancer stem-like cells to radiotherapy
    XIN-HUA XU et al, 2014 CrossRef
  2. BMI-1 Promotes Self-Renewal of Radio- and Temozolomide (TMZ)-Resistant Breast Cancer Cells
    Yanfang Yan et al, 2017, Reprod Sci CrossRef
  3. Nanoparticles co-delivering pVSVMP and pIL12 for synergistic gene therapy of colon cancer
    Yuanyuan Xiao et al, 2017, RSC Adv. CrossRef
  4. Altered microRNA expression profiles are involved in resistance to low-dose ionizing radiation in the absence of BMI1 in human dermal fibroblasts
    SEUNGHEE BAE et al, 2014 CrossRef
  5. The novel mTORC1/2 dual inhibitor INK128 enhances radiosensitivity of breast cancer cell line MCF-7
    Zhi-Gang Liu et al, 2016 CrossRef
  6. BMI-1, a promising therapeutic target for human cancer
    MIN-CONG WANG et al, 2015 CrossRef
  7. Melatonin treatment increases the transcription of cell proliferation-related genes prior to inducing cell death in C6 glioma cells in vitro
    JIAGUI QU et al, 2013 CrossRef
  8. Resveratrol Down-regulates Bmi-1 Expression and Inhibits Breast Cancer Cell Growth In Vitro
    Hyun-Joo Park et al, 2017, ksbbj CrossRef
  9. MicroRNA-203 Increases Cell Radiosensitivity via Directly Targeting Bmi-1 in Hepatocellular Carcinoma
    Yingjie Shao et al, 2018, Mol. Pharmaceutics CrossRef
  10. BMI1 attenuates etoposide-induced G2/M checkpoints via reducing ATM activation
    F Wei et al, 2015, Oncogene CrossRef
  11. USP16 Downregulation by Carboxyl-terminal Truncated HBx Promotes the Growth of Hepatocellular Carcinoma Cells.
    Yu Qian et al, 0 CrossRef
  12. Nanoreporter PET predicts the efficacy of anti-cancer nanotherapy
    Carlos Pérez-Medina et al, 2016, Nat Commun CrossRef
  13. Augmenting drug–carrier compatibility improves tumour nanotherapy efficacy
    Yiming Zhao et al, 2016, Nat Commun CrossRef
  14. Applications of next-generation sequencing analysis for the detection of hepatocellular carcinoma-associated hepatitis B virus mutations
    I-Chin Wu et al, 2018, J Biomed Sci CrossRef
  15. null
    Wei Lei et al, 2019 CrossRef
  16. MicroRNA-128 coordinately targets Polycomb Repressor Complexes in glioma stem cells.
    Pierpaolo Peruzzi et al, 2013, Neuro-oncology CrossRef
  17. BMI-1 activation is crucial in hTERT-induced epithelial–mesenchymal transition of oral epithelial cells
    Bin Qiao et al, 2013, Experimental and Molecular Pathology CrossRef
  18. Gamma histone 2AX (γ-H2AX)as a predictive tool in radiation oncology
    Stamatia Pouliliou et al, 2014, Biomarkers CrossRef
  19. Expression patterns of microRNA-218 and its potential functions by targeting CIP2A and BMI1 genes in melanoma
    Yanping Wei et al, 2014, Tumor Biol. CrossRef
  20. Potential diagnostic significance of HSP90, ACS/TMS1, and L-plastin in the identification of melanoma
    Allen G. Strickler et al, 2014, Melanoma Research CrossRef
  21. Bmi1 regulates self-renewal and epithelial to mesenchymal transition in breast cancer cells through Nanog
    Anurag N Paranjape et al, 2014, BMC Cancer CrossRef
  22. Depletion of B cell CLL/Lymphoma 11B Gene Expression Represses Glioma Cell Growth
    Chih-Kai Liao et al, 2016, Mol Neurobiol CrossRef
  23. Non-viral transfection vectors: are hybrid materials the way forward?
    A. Gigante et al, 2019, Med. Chem. Commun. CrossRef
  24. Bmi-1 regulates stem cell-like properties of gastric cancer cells via modulating miRNAs
    Xiaofeng Wang et al, 2016, J Hematol Oncol CrossRef
  25. Polyethylenimine‐Based Nanogels for Biomedical Applications
    Yu Zou et al, 2019, Macromol. Biosci. CrossRef
  26. Cancer‐associated V‐ATPase induces delayed apoptosis of protumorigenic neutrophils
    Safaa A. Ibrahim et al, 2020, Mol Oncol CrossRef
  27. SNX-2112, an Hsp90 inhibitor, suppresses cervical cancer cells proliferation, migration, and invasion by inhibiting the Akt/mTOR signaling pathway
    Liang-Shun Fu et al, 2020, Med Chem Res CrossRef
  28. BMI1 reduces ATR activation and signalling caused by hydroxyurea
    Xiaozeng Lin et al, 2017, Oncotarget CrossRef
  29. Overexpression of microRNA-132 enhances the radiosensitivity of cervical cancer cells by down-regulating Bmi-1.
    Gui-Feng Liu et al, 0 CrossRef
  30. c-Fos over-expression promotes radioresistance and predicts poor prognosis in malignant glioma
    Zhi-Gang Liu et al, 2016, Oncotarget CrossRef
  31. Breast cancer stem cells in Africa: a fallow research ground
    Eric Gyan et al, 2020, Pathology - Research and Practice CrossRef
  32. ABT-737 reverses the acquired radioresistance of breast cancer cells by targeting Bcl-2 and Bcl-xL
    Ji-Yu Li et al, 2012, J Exp Clin Cancer Res CrossRef