1. MicroRNA as New Tools for Prostate Cancer Risk Assessment and Therapeutic Intervention: Results from Clinical Data Set and Patients’ Samples
    Alessio Cannistraci et al, 2014, BioMed Research International CrossRef
  2. Molecular Regulation of Bone Marrow Metastasis in Prostate and Breast Cancer
    Fakher Rahim et al, 2014, Bone Marrow Research CrossRef
  3. Cellular Plasticity in Prostate Cancer Bone Metastasis
    Dima Y. Jadaan et al, 2015, Prostate Cancer CrossRef
  4. Inhibitory action of pristimerin on hypoxia-mediated metastasis involves stem cell characteristics and EMT in PC-3 prostate cancer cells
    JIANWEI ZUO et al, 2015 CrossRef
  5. MicroRNAs used as novel biomarkers for detecting cancer metastasis
    Chunshan Han et al, 2015, Tumor Biol. CrossRef
  6. Acidic extracellular pH promotes prostate cancer bone metastasis by enhancing PC-3 stem cell characteristics, cell invasiveness and VEGF-induced vasculogenesis of BM-EPCs
    Sheng Huang et al, 2016 CrossRef
  7. Linc-RNA-RoR acts as a “sponge” against mediation of the differentiation of endometrial cancer stem cells by microRNA-145
    Xi Zhou et al, 2014, Gynecologic Oncology CrossRef
  8. Tensor decomposition-based unsupervised feature extraction applied to matrix products for multi-view data processing
    Y-h. Taguchi et al, 2017, PLoS ONE CrossRef
  9. null
    T. Hasegawa et al, 2017 CrossRef
  10. miR-143 and miR-145 inhibit gastric cancer cell migration and metastasis by suppressing MYO6
    Chao Lei et al, 2017, Cell Death Dis CrossRef
  11. miR-34C Disrupts the Stemness of Purified CD133 + Prostatic Cancer Stem Cells
    Yuan Chen et al, 2016, Urology CrossRef
  12. The evolving landscape of prostate cancer stem cell: Therapeutic implications and future challenges
    Eun-Jin Yun et al, 2016, Asian Journal of Urology CrossRef
  13. MicroRNAs targeting prostate cancer stem cells
    Yu-Xiang Fang et al, 2015, Exp Biol Med (Maywood) CrossRef
  14. N-cadherin promotes epithelial-mesenchymal transition and cancer stem cell-like traits via ErbB signaling in prostate cancer cells.
    Min Wang et al, 2016, Int J Oncol CrossRef
  15. Wild-type p53 suppresses the epithelial-mesenchymal transition and stemness in PC-3 prostate cancer cells by modulating miR-145
    DONG REN et al, 2013 CrossRef
  16. miR-150 inhibits proliferation and tumorigenicity via retarding G1/S phase transition in nasopharyngeal carcinoma
    Xiangyong Li et al, 2017 CrossRef
  17. Loss of miR-100 enhances migration, invasion, epithelialmesenchymal transition and stemness properties in prostate cancer cells through targeting Argonaute 2
    MIN WANG et al, 2014 CrossRef
  18. Non-coding RNAs in cancer stem cells
    Huiwen Yan et al, 2018, Cancer Letters CrossRef
  19. The miR-203/SNAI2 axis regulates prostate tumor growth, migration, angiogenesis and stemness potentially by modulating GSK-3β/β-CATENIN signal pathway
    Xinxin Tian et al, 2018, IUBMB Life CrossRef
  20. miR-145 Antagonizes SNAI1-Mediated Stemness and Radiation Resistance in Colorectal Cancer
    Yun Zhu et al, 2018, Molecular Therapy CrossRef
  21. MicroRNA-guided gene expression in prostate cancer: Literature and database overview
    Olga E. Bryzgunova et al, 2018, J Gene Med CrossRef
  22. Biomarker microRNAs for prostate cancer metastasis: screened with a network vulnerability analysis model
    Yuxin Lin et al, 2018, J Transl Med CrossRef
  23. Stromal-induced downregulation of miR-1247 promotes prostate cancer malignancy
    Maria Letizia Taddei et al, 2018, J Cell Physiol CrossRef
  24. null
    Daohong Chen et al, 2014 CrossRef
  25. CD133: a stem cell biomarker and beyond
    Zhong Li, 2013, Exp Hematol Oncol CrossRef
  26. Exploring the MIR143-UPAR Axis for the Inhibition of Human Prostate Cancer Cells In Vitro and In Vivo
    Sven Wach et al, 2019, Molecular Therapy - Nucleic Acids CrossRef
  27. MicroRNA in radiotherapy: miRage or miRador?
    E Korpela et al, 2015, Br J Cancer CrossRef
  28. Roles of microRNAs during prostatic tumorigenesis and tumor progression.
    Y-X Fang et al, 2014, Oncogene CrossRef
  29. TMPRSS2–ERG gene fusions induce prostate tumorigenesis by modulating microRNA miR-200c
    J Kim et al, 2014, Oncogene CrossRef
  30. The roles of microRNAs in the progression of castration-resistant prostate cancer.
    Satoko Kojima et al, 2017, J. Hum. Genet. CrossRef
  31. The tumor-suppressive microRNA-143/145 cluster inhibits cell migration and invasion by targeting GOLM1 in prostate cancer.
    Satoko Kojima et al, 2014, J. Hum. Genet. CrossRef
  32. miRNA‐143 replacement therapy harnesses the proliferation and migration of colorectal cancer cells in vitro
    Leila Karimi et al, 2019, J Cell Physiol CrossRef
  33. miRNAsong: a web-based tool for generation and testing of miRNA sponge constructs in silico.
    Tomas Barta et al, 2016, Sci Rep CrossRef
  34. The role of miRNAs as biomarkers in prostate cancer
    J.M. Cozar et al, 2019, Mutation Research/Reviews in Mutation Research CrossRef
  35. null
    Nagalakshmi Nadiminty et al, 2014 CrossRef
  36. null
    Yvonne Ceder, 2016 CrossRef
  37. miR-143 inhibits glycolysis and depletes stemness of glioblastoma stem-like cells
    Shiguang Zhao et al, 2013, Cancer Letters CrossRef
  38. mir-143 and It’s Emerging Role as a Modulator of Systemic Carcinogenesis
    Shailendra Kapoor, 2014, Cell Biochem Biophys CrossRef
  39. ETS-1-mediated Transcriptional Up-regulation of CD44 Is Required for Sphingosine-1-phosphate Receptor Subtype 3-stimulated Chemotaxis
    Wenliang Zhang et al, 2013, J. Biol. Chem. CrossRef
  40. Small molecule with big role: MicroRNAs in cancer metastatic microenvironments
    Yinghan Su et al, 2014, Cancer Letters CrossRef
  41. Environmental exposures, stem cells, and cancer
    Tasha Thong et al, 2019, Pharmacology & Therapeutics CrossRef
  42. MiRNA regulation of TRAIL expression exerts selective cytotoxicity to prostate carcinoma cells
    Wei Huo et al, 2014, Mol Cell Biochem CrossRef
  43. Regulators of prostate cancer stem cells
    Candace L. Kerr et al, 2014, Current Opinion in Oncology CrossRef
  44. miR-145 suppresses thyroid cancer growth and metastasis and targets AKT3.
    Myriem Boufraqech et al, 2014, Endocr. Relat. Cancer CrossRef
  45. MicroRNA-145: a potent tumour suppressor that regulates multiple cellular pathways
    Shi-Yun Cui et al, 2014, J. Cell. Mol. Med. CrossRef
  46. Double-negative feedback loop between ZEB2 and miR-145 regulates epithelial-mesenchymal transition and stem cell properties in prostate cancer cells
    Dong Ren et al, 2014, Cell Tissue Res CrossRef
  47. Syndecan-1 responsive microRNA-126 and 149 regulate cell proliferation in prostate cancer
    Tomomi Fujii et al, 2015, Biochemical and Biophysical Research Communications CrossRef
  48. MicroRNA in prostate cancer: functional importance and potential as circulating biomarkers
    Benjamin L Jackson et al, 2014, BMC Cancer CrossRef
  49. null
    Kenneth Lundstrom, 2015 CrossRef
  50. Enhanced regulation of cell cycle and suppression of osteoblast differentiation molecular signatures by prostate cancer stem-like holoclones
    Michael F Gallagher et al, 2015, J Clin Pathol CrossRef
  51. A prostate cancer-targeted polyarginine-disulfide linked PEI nanocarrier for delivery of microRNA
    Tingting Zhang et al, 2015, Cancer Letters CrossRef
  52. The senescent microenvironment promotes the emergence of heterogeneous cancer stem-like cells
    Luis Jaime Castro-Vega et al, 2015, CARCIN CrossRef
  53. Implications of miR cluster 143/145 as universal anti-oncomiRs and their dysregulation during tumorigenesis
    Ani V. Das et al, 2015, Cancer Cell Int CrossRef
  54. Brief Report: Inhibition of miR-145 Enhances Reprogramming of Human Dermal Fibroblasts to Induced Pluripotent Stem Cells.
    Tomas Barta et al, 2016, Stem Cells CrossRef
  55. Mitigation of arsenic-induced acquired cancer phenotype in prostate cancer stem cells by miR-143 restoration
    Ntube N.O. Ngalame et al, 2016, Toxicology and Applied Pharmacology CrossRef
  56. Low-dose DNA-demethylating agent enhances the chemosensitivity of cancer cells by targeting cancer stem cells via the upregulation of microRNA-497.
    Lin Liu et al, 0 CrossRef
  57. Curcumin sensitizes prostate cancer cells to radiation partly via epigenetic activation of miR-143 and miR-143 mediated autophagy inhibition
    Jianbo Liu et al, 2017, Journal of Drug Targeting CrossRef
  58. Oct4 mediates Müller glia reprogramming and cell cycle exit during retina regeneration in zebrafish
    Poonam Sharma et al, 2019, Life Sci. Alliance CrossRef
  59. miR-4666-3p and miR-329 Synergistically Suppress the Stemness of Colorectal Cancer Cells via Targeting TGF-β/Smad Pathway
    Jun Ye et al, 2019, Front. Oncol. CrossRef
  60. Biphasic Role of Tgf-β Signaling during Müller Glia Reprogramming and Retinal Regeneration in Zebrafish
    Poonam Sharma et al, 2020, iScience CrossRef
  61. Isolation of cancer cells with augmented spheroid-forming capability using a novel tool equipped with removable filter
    Emi Fujibayashi et al, 2018, Oncotarget CrossRef
  62. The PCAT3/PCAT9-miR-203-SNAI2 axis functions as a key mediator for prostate tumor growth and progression.
    Fangfang Tao et al, 0 CrossRef
  63. Epithelial-mesenchymal transition in prostate cancer: an overview
    Micaela Montanari et al, 2017, Oncotarget CrossRef
  64. MiR-4638-5p inhibits castration resistance of prostate cancer through repressing Kidins220 expression and PI3K/AKT pathway activity
    Yang Wang et al, 2016, Oncotarget CrossRef
  65. Honokiol inhibits bladder tumor growth by suppressing EZH2/miR-143 axis
    Qing Zhang et al, 2015, Oncotarget CrossRef
  66. Ras and Wnt Interaction Contribute in Prostate Cancer Bone Metastasis
    Shian-Ren Lin et al, 2020, Molecules CrossRef
  67. Prostate cancer-derived holoclones: a novel and effective model for evaluating cancer stemness
    Louise Flynn et al, 2020, Sci Rep CrossRef
  68. Role of microRNA‑150‑5p/SRCIN1 axis in the progression of breast cancer
    Qingfu Lu et al, 2019, Exp Ther Med CrossRef
  69. miR-143 acts as an inhibitor of migration and proliferation as well as an inducer of apoptosis in melanoma cancer cells in vitro.
    Seyed Ali Nabipoorashrafi et al, 2020, IUBMB Life CrossRef
  70. miRNAs and radiotherapy response in prostate cancer
    Maria Yu Konoshenko et al, 2020, Andrologia CrossRef
  71. CPEB1 orchestrates a fine-tuning of miR-145-5p tumor-suppressive activity on TWIST1 translation in prostate cancer cells
    Fatemeh Rajabi et al, 2020, Oncotarget CrossRef
  72. MSI1 Promotes the Expression of the GBM Stem Cell Marker CD44 by Impairing miRNA-Dependent Degradation
    Rebecca Pötschke et al, 2020, Cancers CrossRef
  73. SNAI2 Modulates Colorectal Cancer 5-Fluorouracil Sensitivity through miR145 Repression
    Victoria J. Findlay et al, 2014, Mol Cancer Ther CrossRef
  74. miR-143/145 inhibits Th9 cell differentiation by targeting NFATc1
    Xin Qiu et al, 2021, Molecular Immunology CrossRef
  75. SChLAP1 promotes prostate cancer development through interacting with EZH2 to mediate promoter methylation modification of multiple miRNAs of chromosome 5 with a DNMT3a-feedback loop
    Kai Huang et al, 2021, Cell Death Dis CrossRef
  76. miRNA network associated with the TMPRSS2-ERG fusion in prostate cancer invasion
    Ibrahim Bozgeyik, 2021, Meta Gene CrossRef
  77. MicroRNA mediated therapeutic effects of natural agents in prostate cancer
    Km Anjaly et al, 2021, Mol Biol Rep CrossRef
  78. The miRNAs involved in prostate cancer chemotherapy response as chemoresistance and chemosensitivity predictors
    Maria Konoshenko et al, 2021, Andrology CrossRef
  79. MicroRNA expression in Epstein-Barr virus-associated post-transplant smooth muscle tumours is related to leiomyomatous phenotype
    Danny Jonigk et al, 2013, Clin Sarcoma Res CrossRef
  80. miRNAs and androgen deprivation therapy for prostate cancer
    Konoshenko Maria Yu et al, 2021, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer CrossRef
  81. Anticancer Activity of Sweroside Nanoparticles in Prostate Cancer Bone Metastasis in PC-3 Cells Involved in Wnt/β-Catenin Signaling Pathway
    Sheng Huang et al, 2021, j biomed nanotechnol CrossRef
  82. Diversity and functional convergence of small noncoding RNAs in male germ cell differentiation and fertilization
    Jesús García-López et al, 2015, RNA CrossRef
  83. Role of miRNA-145, 148, and 185 and Stem Cells in Prostate Cancer.
    Michele Caraglia, 0 CrossRef
  84. The role of microRNAs in prostate cancer migration, invasion, and metastasis
    Shirin Golabi Aghdam et al, 2019, Journal Cellular Physiology CrossRef
  85. Cancer Stem-Cell Related miRNAs: Novel Potential Targets for Metastatic Prostate Cancer
    null Anshika N. Singh et al, 2015, J. Anal. Oncol. CrossRef
  86. Peptide Targeted Gold Nanoplatform Carrying miR-145 Induces Antitumoral Effects in Ovarian Cancer Cells
    Edison Salas-Huenuleo et al, 2022, Pharmaceutics CrossRef
  87. null
    Adam Wiggins et al, 2022 CrossRef
  88. An overview of prostate cancer (PCa) diagnosis: Potential role of miRNAs
    Muhammad Bilal et al, 2022, Translational Oncology CrossRef
  89. Quantitative Metabolomics to Explore the Role of Plasma Polyamines in Colorectal Cancer
    Donatella Coradduzza et al, 2022, IJMS CrossRef
  90. The function of miR-145 in colorectal cancer progression; an updated review on related signaling pathways
    Nazila Mozammel et al, 2022, Pathology - Research and Practice CrossRef
  91. LINC01296 promotes cancer stemness traits in oral carcinomas by sponging miR-143
    Kuang-Yuan Liang et al, 2023, Journal of Dental Sciences CrossRef
  92. L1CAM promotes vasculogenic mimicry formation by miR ‐143‐3p‐induced expression of hexokinase 2 in glioma
    Yishan Huang et al, 2023, Molecular Oncology CrossRef
  93. State-of-the-art therapeutic strategies for targeting cancer stem cells in prostate cancer
    Saravanan Ramesh et al, 2023, Front. Oncol. CrossRef
  94. The Bone Microenvironment Soil in Prostate Cancer Metastasis: An miRNA Approach
    Anne Natalie Prigol et al, 2023, Cancers CrossRef