1. Generalization of the Thermal Dose of Hyperthermia in Oncology
    Gyula Vincze et al, 2015, OJBIPHY CrossRef
  2. Heating Preciosity—Trends in Modern Oncological Hyperthermia
    Oliver Szasz et al, 2017, OJBIPHY CrossRef
  3. Nanoparticles and nanothermia for malignant brain tumors, a suggestion of treatment for further investigations
    Cristina Prieto et al, 2018, Reports of Practical Oncology & Radiotherapy CrossRef
  4. Immunogenic Effect of Hyperthermia on Enhancing Radiotherapeutic Efficacy.
    Sungmin Lee et al, 2018, Int J Mol Sci CrossRef
  5. Modulated electro‐hyperthermia induced p53 driven apoptosis and cell cycle arrest additively support doxorubicin chemotherapy of colorectal cancer in vitro
    Tamas Vancsik et al, 2019, Cancer Med CrossRef
  6. Stress-Induced, p53-Mediated Tumor Growth Inhibition of Melanoma by Modulated Electrohyperthermia in Mouse Models without Major Immunogenic Effects
    Balázs Besztercei et al, 2019, IJMS CrossRef
  7. Electro-hyperthermia inhibits glioma tumorigenicity through the induction of E2F1-mediated apoptosis
    Jihye Cha et al, 2015, International Journal of Hyperthermia CrossRef
  8. Improving immunological tumor microenvironment using electro-hyperthermia followed by dendritic cell immunotherapy
    Yuk-Wah Tsang et al, 2015, BMC Cancer CrossRef
  9. Low-dose hyperthermia enhances the antitumor effects of chemotherapy in squamous cell carcinoma
    X. Hu et al, 2017 CrossRef
  10. Review of the Clinical Evidences of Modulated Electro-Hyperthermia (mEHT) Method: An Update for the Practicing Oncologist
    Attila M. Szasz et al, 2019, Front. Oncol. CrossRef
  11. Potentiation of the Abscopal Effect by Modulated Electro-Hyperthermia in Locally Advanced Cervical Cancer Patients
    Carrie Anne Minnaar et al, 2020, Front. Oncol. CrossRef
  12. In vitro comparison of conventional hyperthermia and modulated electro-hyperthermia
    Kai-Lin Yang et al, 2016, Oncotarget CrossRef
  13. Quo Vadis Oncological Hyperthermia (2020)?
    Sun-Young Lee et al, 2020, Front. Oncol. CrossRef
  14. Exhaustion of Protective Heat Shock Response Induces Significant Tumor Damage by Apoptosis after Modulated Electro-Hyperthermia Treatment of Triple Negative Breast Cancer Isografts in Mice
    Lea Danics et al, 2020, Cancers CrossRef
  15. Modulated Electro-Hyperthermia-Induced Tumor Damage Mechanisms Revealed in Cancer Models
    Tibor Krenacs et al, 2020, IJMS CrossRef
  16. Modulated Electrohyperthermia: A New Hope for Cancer Patients
    Huda F. Alshaibi et al, 2020, BioMed Research International CrossRef
  17. A Potential Bioelectromagnetic Method to Slow Down the Progression and Prevent the Development of Ultimate Pulmonary Fibrosis by COVID-19
    Syed Muzzammil Masaud et al, 2020, Front. Immunol. CrossRef
  18. Beneficial effects of modulated electro-hyperthermia during neoadjuvant treatment for locally advanced rectal cancer
    Sunghyun Kim et al, 2021, International Journal of Hyperthermia CrossRef
  19. Modulated Electro-Hyperthermia Induces a Prominent Local Stress Response and Growth Inhibition in Mouse Breast Cancer Isografts
    Csaba András Schvarcz et al, 2021, Cancers CrossRef
  20. Non-thermal membrane effects of electromagnetic fields and therapeutic applications in oncology
    Peter Wust et al, 2021, International Journal of Hyperthermia CrossRef
  21. “Oncothermia” (Modulated electro-hyperthermia)
    MASAHIKO KANAMORI et al, 2021, Thermal Med. CrossRef
  22. Heterogeneous Heat Absorption Is Complementary to Radiotherapy
    Andras Szasz, 2022, Cancers CrossRef
  23. Forcing the Antitumor Effects of HSPs Using a Modulated Electric Field
    Carrie Anne Minnaar et al, 2022, Cells CrossRef
  24. null
    Sun-Young Lee et al, 2022 CrossRef
  25. Targeting the heat shock response induced by modulated electro-hyperthermia (mEHT) in cancer
    Pedro Viana et al, 2024, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer CrossRef