1. Targeting Phenotypic Plasticity in Prostate Cancer
    Marion Vanneste et al, 2017, Curr Mol Bio Rep CrossRef
  2. Pristimerin effectively inhibits the malignant phenotypes of uveal melanoma cells by targeting NF-κB pathway
    Biao Zhang et al, 2017 CrossRef
  3. The synthetic retinoid ST1926 attenuates prostate cancer growth and potentially targets prostate cancer stem‐like cells
    Hisham F. Bahmad et al, 2019, Molecular Carcinogenesis CrossRef
  4. A Hopeful Natural Product, Pristimerin, Induces Apoptosis, Cell Cycle Arrest, and Autophagy in Esophageal Cancer Cells.
    Peng Huang et al, 2019, Anal Cell Pathol (Amst) CrossRef
  5. Anti-Cancer Effects of Pristimerin and the Mechanisms: A Critical Review
    Jia-jun Li et al, 2019, Front. Pharmacol. CrossRef
  6. Garcinol downregulates Notch1 signaling via modulating miR-200c and suppresses oncogenic properties of PANC-1 cancer stem-like cells
    Chi-Cheng Huang et al, 2017, Biotechnology and Applied Biochemistry CrossRef
  7. Hypoxia induced cancer stem cell enrichment promotes resistance to androgen deprivation therapy in prostate cancer
    Debbie O'Reilly et al, 2019, Steroids CrossRef
  8. Anti-cancer effect of pristimerin by inhibition of HIF-1α involves the SPHK-1 pathway in hypoxic prostate cancer cells
    Seon-Ok Lee et al, 2016, BMC Cancer CrossRef
  9. Glucocorticoid receptor-mediated delivery of nano gold–withaferin conjugates for reversal of epithelial-to-mesenchymal transition and tumor regression
    Pritha Agarwalla et al, 2016, Nanomedicine CrossRef
  10. The plant-derived triterpenoid tingenin B is a potent anticancer agent due to its cytotoxic activity on cancer stem cells of breast cancer in vitro
    Buse Cevatemre et al, 2016, Chemico-Biological Interactions CrossRef
  11. null
    Muthu K. Shanmugam et al, 2016 CrossRef
  12. Hypoxia inducible factors in the tumor microenvironment as therapeutic targets of cancer stem cells
    Farnaz Hajizadeh et al, 2019, Life Sciences CrossRef
  13. Isolation of cancer cells with augmented spheroid-forming capability using a novel tool equipped with removable filter
    Emi Fujibayashi et al, 2018, Oncotarget CrossRef
  14. null
    Rekha Gahtori et al, 2021 CrossRef
  15. Cellular and Molecular Mechanisms of Pristimerin in Cancer Therapy: Recent Advances
    Run-Ze Chen et al, 2021, Front. Oncol. CrossRef
  16. Bone marrow mesenchymal stem cells promote prostate cancer cell stemness via cell–cell contact to activate the Jagged1/Notch1 pathway
    Ji-wen Cheng et al, 2021, Cell Biosci CrossRef
  17. KibioR & Kibio: a new architecture for next-generation data querying and sharing in big biology
    Régis Ongaro-Carcy et al, 2021 CrossRef
  18. Pristimerin induces apoptosis and tumor inhibition of oral squamous cell carcinoma through activating ROS-dependent ER stress/Noxa pathway
    Qun Zhao et al, 2021, Phytomedicine CrossRef
  19. Perillaldehyde inhibits bone metastasis and receptor activator of nuclear factor-κB ligand (RANKL) signaling-induced osteoclastogenesis in prostate cancer cell lines
    Zhuoyuan Lin et al, 2021, Bioengineered CrossRef
  20. The Potential for Natural Products to Overcome Cancer Drug Resistance by Modulation of Epithelial-Mesenchymal Transition
    Asefeh Dahmardeh Ghalehno et al, 2022, Nutrition and Cancer CrossRef
  21. 5-Aminolevulinic acid overcomes hypoxia-induced radiation resistance by enhancing mitochondrial reactive oxygen species production in prostate cancer cells.
    Takuya Owari et al, 2022, Br J Cancer CrossRef
  22. null
    Ana Carolina B. da C. Rodrigues et al, 2021 CrossRef
  23. null
    Ana Carolina B. da C. Rodrigues et al, 2022 CrossRef
  24. Let’s Go 3D! New Generation of Models for Evaluating Drug Response and Resistance in Prostate Cancer
    Tina Petrić et al, 2023, IJMS CrossRef
  25. Cancer stem cell in prostate cancer progression, metastasis and therapy resistance
    Poornima Verma et al, 2023, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer CrossRef