1. Essential role of miRNAs in orchestrating the biology of the tumor microenvironment
    Jamie N. Frediani et al, 2016, Mol Cancer CrossRef
  2. Inhibition of miR-7 promotes angiogenesis in human umbilical vein endothelial cells by upregulating VEGF via KLF4
    Yi-Ze Li et al, 2016 CrossRef
  3. Screening and confirmation of microRNA markers for distinguishing between menstrual and peripheral blood
    Zhilong Li et al, 2017, Forensic Science International: Genetics CrossRef
  4. Tumor angiogenesis revisited: Regulators and clinical implications
    Roberto Ronca et al, 2017, Med. Res. Rev. CrossRef
  5. MicroRNA-485 inhibits malignant biological behaviour of glioblastoma cells by directly targeting PAK4
    Ke Mao et al, 2017 CrossRef
  6. Hypoxia induces miR-153 through the IRE1α-XBP1 pathway to fine tune the HIF1α/VEGFA axis in breast cancer angiogenesis
    Huichun Liang et al, 2018, Oncogene CrossRef
  7. Immunohistochemical expression HIF1α in chronic plaque psoriasis, an association with angiogenesis and proliferation
    Asmaa Gaber Abdou et al, 2018, Journal of Immunoassay and Immunochemistry CrossRef
  8. Regulation of tumor angiogenesis by microRNAs: State of the art
    Nasser H. Goradel et al, 2018, J Cell Physiol CrossRef
  9. Reciprocal regulations between miRNAs and HIF-1α in human cancers
    Wanli Yang et al, 2018, Cell. Mol. Life Sci. CrossRef
  10. Translating the Hypoxic Response—the Role of HIF Protein Translation in the Cellular Response to Low Oxygen
    Iglika G. Ivanova et al, 2019, Cells CrossRef
  11. MicroRNA-497 downregulation contributes to cell proliferation, migration, and invasion of estrogen receptor alpha negative breast cancer by targeting estrogen-related receptor alpha
    Li Han et al, 2016, Tumor Biol. CrossRef
  12. Up-regulation of miR-497 confers resistance to temozolomide in human glioma cells by targeting mTOR/Bcl-2
    Danhua Zhu et al, 2017, Cancer Med CrossRef
  13. MiR-150 regulates human keratinocyte proliferation in hypoxic conditions through targeting HIF-1α and VEGFA: Implications for psoriasis treatment.
    Yongjian Li et al, 0 CrossRef
  14. The Regulatory Role of MicroRNAs in Breast Cancer
    Hui-Yi Loh et al, 2019, IJMS CrossRef
  15. MicroRNA and Oxidative Stress Interplay in the Context of Breast Cancer Pathogenesis
    Giulia Cosentino et al, 2019, IJMS CrossRef
  16. Insights into the Regulation of Tumor Angiogenesis by Micro-RNAs.
    Valli De re, 0 CrossRef
  17. Anti-Angiogenic Effects of Phytochemicals on miRNA Regulating Breast Cancer Progression
    Elizabeth Varghese et al, 2020, Biomolecules CrossRef
  18. miR-497 expression, function and clinical application in cancer
    Gang Yang et al, 2016, Oncotarget CrossRef
  19. Dissecting miRNA facilitated physiology and function in human breast cancer for therapeutic intervention
    Dipta Sengupta et al, 2020, Seminars in Cancer Biology CrossRef
  20. miR-15/107 microRNA Gene Group: Characteristics and Functional Implications in Cancer
    Chiara Turco et al, 2020, Front. Cell Dev. Biol. CrossRef
  21. AngiomiRs: MicroRNAs driving angiogenesis in cancer (Review)
    Yarely Salinas‑Vera et al, 2018, Int J Mol Med CrossRef
  22. Investigating age‑induced differentially expressed genes and potential molecular mechanisms in osteosarcoma based on integrated bioinformatics analysis
    Jian‑Sheng Wang et al, 2019, Mol Med Report CrossRef
  23. CircZFR functions as a sponge of miR-578 to promote breast cancer progression by regulating HIF1A expression
    Zhuo Chen et al, 2020, Cancer Cell Int CrossRef
  24. The emerging role of miRNA clusters in breast cancer progression
    Amoolya Kandettu et al, 2020, Biochimica et Biophysica Acta (BBA) - Reviews on Cancer CrossRef
  25. Role of microRNA in forming breast carcinoma
    Momi Saikia et al, 2020, Life Sciences CrossRef
  26. Revisiting cancer hallmarks: insights from the interplay between oxidative stress and non-coding RNAs
    Li Zhou et al, 2020, Mol Biomed CrossRef
  27. Regulation of MicroRNA-497-Targeting AKT2 Influences Tumor Growth and Chemoresistance to Cisplatin in Lung Cancer
    Lin Wang et al, 2020, Front. Cell Dev. Biol. CrossRef
  28. Network characteristics of human RNA-RNA interactions and application in the discovery of breast cancer-associated RNAs
    Xingyong Zhu et al, 2020, Chemometrics and Intelligent Laboratory Systems CrossRef
  29. The role of microenvironment in tumor angiogenesis.
    Xianjie Jiang et al, 2020, J Exp Clin Cancer Res CrossRef
  30. Methylation-Mediated Silencing of MicroRNA-497 Promotes Breast Cancer Progression Through Up-Regulation of Mucin1
    Shuang Tao et al, 2020, Front. Oncol. CrossRef
  31. null
    Nitin Patil et al, 2020 CrossRef
  32. GPER1 and microRNA: Two Players in Breast Cancer Progression
    Adele Vivacqua, 2020, IJMS CrossRef
  33. STIM1 promotes angiogenesis by reducing exosomal miR-145 in breast cancer MDA-MB-231 cells
    Shunli Pan et al, 2021, Cell Death Dis CrossRef
  34. miRNA-Based Therapeutics in Breast Cancer: A Systematic Review
    Anna Maria Grimaldi et al, 2021, Front. Oncol. CrossRef
  35. MicroRNA miR-497 is closely associated with poor prognosis in patients with cerebral ischemic stroke
    Changyang Zhong et al, 2021, Bioengineered CrossRef
  36. Angioregulatory microRNAs in breast cancer: Molecular mechanistic basis and implications for therapeutic strategies
    Mohammad Hasan Soheilifar et al, 2021, Journal of Advanced Research CrossRef
  37. Tumor‐derived exosomes: Implication in angiogenesis and antiangiogenesis cancer therapy
    Cynthia Aslan et al, 2019, J Cell Physiol CrossRef
  38. MicroRNAs: An Important Players in Breast Cancer Angiogenesis and Therapeutic Targets
    Bashdar Mahmud Hussen et al, 2021, Front. Mol. Biosci. CrossRef
  39. Signaling pathways modulated by miRNAs in breast cancer angiogenesis and new therapeutics
    Bashdar Mahmud Hussen et al, 2022, Pathology - Research and Practice CrossRef
  40. Development and validation of a circulating microRNA panel for the early detection of breast cancer
    Ruiyang Zou et al, 2022, Br J Cancer CrossRef
  41. Targeting Angiogenesis in Breast Cancer: Current Evidence and Future Perspectives of Novel Anti-Angiogenic Approaches
    Nehad M. Ayoub et al, 2022, Front. Pharmacol. CrossRef
  42. Knockdown of long non‑coding RNA DDX11‑AS1 inhibits the proliferation, migration and paclitaxel resistance of breast cancer cells by upregulating microRNA‑497 expression
    Meng Liang et al, 2022, Mol Med Rep CrossRef
  43. null
    Mari Uyeda, 2022 CrossRef
  44. Non-Exosomal and Exosome-Derived miRNAs as Promising Biomarkers in Canine Mammary Cancer
    Patrícia Petroušková et al, 2022, Life CrossRef
  45. null
    Joni Yadav et al, 2022 CrossRef
  46. Circulating miRNAs in Breast Cancer Diagnosis and Prognosis
    Barbara Cardinali et al, 2022, Cancers CrossRef
  47. The role of epigenetic modifications in drug resistance and treatment of breast cancer
    Mohsen Karami Fath et al, 2022, Cell Mol Biol Lett CrossRef
  48. Non-coding RNAs in lung cancer: emerging regulators of angiogenesis
    Yajie Liao et al, 2022, J Transl Med CrossRef
  49. Potential utility of miRNAs for liquid biopsy in breast cancer
    Xiangrong Liu et al, 2022, Front. Oncol. CrossRef
  50. Role of MicroRNAs and Long Non-Coding RNAs in Regulating Angiogenesis in Human Breast Cancer: A Molecular Medicine Perspective
    Vandana Golhani et al, 2022, CMM CrossRef
  51. A vicious circle in breast cancer: The interplay between inflammation, reactive oxygen species, and microRNAs
    Valeria Villarreal-García et al, 2022, Front. Oncol. CrossRef
  52. Modulatory role of miRNAs in thyroid and breast cancer progression and insights into their therapeutic manipulation
    Rubai Ahmed et al, 2022, Current Research in Pharmacology and Drug Discovery CrossRef