1. Selective small-molecule EPAC activators
    Urszula Luchowska-Stańska et al, 2019, Biochemical Society Transactions CrossRef
  2. The LncRNA DUXAP10 Could Function as a Promising Oncogene in Human Cancer
    Junjie Zhao et al, 2022, Frontiers in Cell and Developmental Biology CrossRef
  3. cAMP-PKA/EPAC signaling and cancer: the interplay in tumor microenvironment
    Hongying Zhang et al, 2024, Journal of Hematology & Oncology CrossRef
  4. Cancer – An ongoing fight searching for reasons and therapies
    Susanne Ackermann et al, 2019, Acta Physiologica CrossRef
  5. PDE4 and Epac1 Synergistically Promote Rectal Carcinoma via the cAMP Pathway
    Xiangyu Kong et al, 2019, Analytical Cellular Pathology CrossRef
  6. Chemical synthesis and biological activity of novel brominated 7-deazaadenosine-3′,5′-cyclic monophosphate derivatives
    Marco Lelle et al, 2019, Bioorganic & Medicinal Chemistry CrossRef
  7. The Potential of a Novel Class of EPAC-Selective Agonists to Combat Cardiovascular Inflammation
    Graeme Barker et al, 2017, Journal of Cardiovascular Development and Disease CrossRef
  8. cAMP Signaling in Cancer: A PKA-CREB and EPAC-Centric Approach
    Muhammad Bilal Ahmed et al, 2022, Cells CrossRef
  9. The Role of Neuropeptide-Stimulated cAMP-EPACs Signalling in Cancer Cells
    Zhengyin Gao et al, 2022, Molecules CrossRef
  10. Epac as a tractable therapeutic target
    Hasan Slika et al, 2023, European Journal of Pharmacology CrossRef
  11. EPAC inhibitor suppresses angiogenesis and tumor growth of triple-negative breast cancer
    Zishuo Li et al, 2024, Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease CrossRef
  12. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development
    William G. Robichaux et al, 2018, Physiological Reviews CrossRef
  13. Stability, pharmacokinetics, and biodistribution in mice of the EPAC1 inhibitor (R)-CE3F4 entrapped in liposomes and lipid nanocapsules
    Balthazar Toussaint et al, 2021, International Journal of Pharmaceutics CrossRef
  14. Loss of cyclin‐dependent kinase‐like 2 predicts poor prognosis in gastric cancer, and its overexpression suppresses cells growth and invasion
    Chia‐Lang Fang et al, 2018, Cancer Medicine CrossRef
  15. Creating a potential diagnostic for prostate cancer risk stratification (InformMDx™) by translating novel scientific discoveries concerning cAMP degrading phosphodiesterase-4D7 (PDE4D7)
    Dave J.P. Henderson et al, 2019, Clinical Science CrossRef
  16. Function of m 5 C RNA methyltransferase NOP2 in high-grade serous ovarian cancer
    Shimin Yang et al, 2023, Cancer Biology & Therapy CrossRef
  17. Epac, a positive or negative signaling molecule in cardiovascular diseases
    Yu-Qing Tan et al, 2022, Biomedicine & Pharmacotherapy CrossRef
  18. Epac: A Promising Therapeutic Target for Vascular Diseases: A Review
    Yunfeng Pan et al, 2022, Frontiers in Pharmacology CrossRef
  19. Ubiquitin‐specific protease 3 overexpression promotes gastric carcinogenesis and is predictive of poor patient prognosis
    Chia‐Lang Fang et al, 2018, Cancer Science CrossRef
  20. Gene expression profile analysis of ENO1 knockdown in gastric cancer cell line MGC‑803
    Zhigang Huang et al, 2019, Oncology Letters CrossRef
  21. The Role of Epac in Cancer Progression
    Nadine Wehbe et al, 2020, International Journal of Molecular Sciences CrossRef
  22. Interspecies comparison of plasma metabolism and sample stabilization for quantitative bioanalyses: Application to (R)-CE3F4 in preclinical development, including metabolite identification by high-resolution mass spectrometry
    Balthazar Toussaint et al, 2021, Journal of Chromatography B CrossRef
  23. EPAC Regulates Melanoma Growth by Stimulating mTORC1 Signaling and Loss of EPAC Signaling Dependence Correlates with Melanoma Progression
    Aishwarya Krishnan et al, 2022, Molecular Cancer Research CrossRef