TY - JOUR AB - MicroRNAs (miRNAs) are reported to be involved in renal hypoxia/reoxygenation (H/R) damage. To investigate this further, human kidney (HK‑2) cells were cultured, subjected to H/R and the function of miR‑30a‑5p and glutamate dehydrogenase 1 (GLUD1) was evaluated. The results showed that, miR‑30‑5p was downregulated and GLUD1 was upregulated in HK‑2 cells exposed to H/R. The relationship between miR‑30a‑5p and GLUD1 was determined using dual luciferase assays. Primary HK‑2 cells were cultured in H/R and transfected with negative control 1 (NC1), negative control 2 (NC2), mimic, inhibitor or GLUD1 siRNA plasmids. Reactive oxygen species (ROS) generation, superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) activities, and the rate of apoptosis in HK‑2 cells were assessed. The results showed that, miR‑30a‑5p mimic reduced the production of ROS in HK‑2 cells treated with H/R, but increased the activity of SOD, CAT and GPx. In addition, miR‑30a‑5p mimic significantly decreased H/R‑mediated apoptosis, decreased the expression of bax and activity of caspase‑3 and enhanced the expression of bcl‑2. However, miR‑30a‑5p inhibitor showed the opposite effect with regard to the degree of oxidative damage and apoptosis in H/R‑induced HK‑2 cells. Silencing GLUD1 rescued the influence of miR‑30a‑5p inhibitor on oxidative injury and apoptosis in HK‑2 cells stimulated with H/R. These results demonstrated that under H/R conditions, miR‑30a‑5p can reduce oxidative stress in vitro by targeting GLUD1, which may be a novel therapeutic target for liver failure and worth further study. AD - Department of Nephrology, Jinhua Hospital of Traditional Chinese Medicine, Jinhua, Zhejiang 321017, P.R. China AU - He,Yangbiao AU - Lang,Xujun AU - Cheng,Dong AU - Zhang,Ting AU - Yang,Zhihao AU - Xiong,Rongbing DA - 2020/10/01 DO - 10.3892/or.2020.7718 EP - 1549 IS - 4 JO - Oncol Rep KW - hypoxia/reoxygenation miRNA‑30a‑5p glutamate dehydrogenase 1 human kidney cells oxidative stress apoptosis PY - 2020 SN - 1021-335X 1791-2431 SP - 1539 ST - miR‑30a‑5p inhibits hypoxia/reoxygenation‑induced oxidative stress and apoptosis in HK‑2 renal tubular epithelial cells by targeting glutamate dehydrogenase 1 (GLUD1) T2 - Oncology Reports TI - miR‑30a‑5p inhibits hypoxia/reoxygenation‑induced oxidative stress and apoptosis in HK‑2 renal tubular epithelial cells by targeting glutamate dehydrogenase 1 (GLUD1) UR - https://doi.org/10.3892/or.2020.7718 VL - 44 ER -