Chinese herbal formula QHF inhibits liver cancer cell invasion and migration

TAO CHEN¹², QUAN WANG¹², YUNXIAO LI¹², HEFEI HUANG¹² and WEI HU¹²

¹College of Medical Sciences, China Three Gorges University; ²Third-Grade Pharmacological Laboratory on Traditional Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Yichang, Hubei 443002, P.R. China

Received September 12, 2014; Accepted July 17, 2015

DOI: 10.3892/etm.2016.3247

Abstract. The aim of the present study was to observe the effects of the Chinese herbal formula QHF (Q, Qingrejiedu; H, Huoxuehuayu; and F, Fuzhengguben) on the migration and invasion of hepatocellular carcinoma (HCC) HepG2 cells and to elucidate the potential molecular mechanisms involved. HepG2 cells were treated with various concentrations of QHF, and scratch and Transwell® migration assays were used to qualitatively analyze differences in the migration and invasion activity of these cells. Extracellular signal-regulated kinase (ERK), p38 and c-Jun N-terminal kinase (JNK) inhibitors were subsequently introduced in order to study the association between QHF and the invasion of HepG2 cells. The protein expression levels of the mitogen-activated protein kinase (MAPK) signaling pathway in HepG2 cells in the presence and absence of QHF were additionally determined using western blot analysis. The results showed that QHF significantly inhibited the proliferation of the HepG2 cells in a concentration-dependent manner, in addition to inhibiting cell movement, which reduced the ability of the cells to invade and migrate. Western blot analysis indicated that the effects of QHF on HCC HepG2 cells after 24 h were to significantly decrease the expression of phosphorylated- (p-)ERK and to increase the expression of p-p38 and p-JNK; however, the total quantity of ERK, p38 and JNK protein remained unchanged. The administration of an inhibitor of ERK altered p38 and JNK expression and promoted the anti-invasion effects of QHF, whereas p38 and JNK inhibitors only partially reversed this effect. The results of the present study indicate, therefore, that QHF is able to inhibit the migratory and invasive activity of HepG2 cells. A possible underlying mechanism involves the activation of the p38 and JNK MAPK signaling pathway and the attenuation of the ERK signaling pathway.

Introduction

According to Traditional Chinese Medicine (TCM), the etiology and pathogenesis of hepatocellular carcinoma (HCC) involves toxic stagnation, stagnation of damp heat, Qi stagnation and blood stasis and Qi deficiency. Results from clinical epidemiological studies indicate that stasis, toxicity and deficiency are pivotally involved in clinical liver cancer syndrome, with deficiency being the most important factor (1). QHF formula is a Chinese herbal medicine that contains extracts from multiple effective antitumor components, which, in combination, exhibit improved antitumor efficacy. QHF exerts the effects of clearing heat and detoxifying (Qingrejiedu), promoting blood circulation and minimizing blood stasis (Huoxuehuayu, and promoting the recovery of physiological function (Fuzhengguben) (2). The most effective compounds and the optimum therapeutic ratio have been determined on the basis of previous literature and animal experiments, which showed that the most effective therapy consists of 800 mg/kg cinobufotalin, 14 mg/kg ginsenoside Rg3, 5.5 mg/kg notoginseng triterpenes and 100 mg/kg mushroom polysaccharide (2,3).

Preliminary experiments have indicated that QHF is effective against liver cancer, inhibits the growth of solid tumors and prolongs survival in mice exhibiting tumors and ascites. On this basis, we previously investigated the efficacy of QHF and chemotherapy against HCC, and the results suggested that QHF, in combination with the chemotherapy drug cisplatin (DDP), could prevent DDP-induced leukocyte reduction and mitigate thymus and spleen atrophy. Furthermore, the combination treatment was shown to be functional in inhibiting liver cancer cell proliferation and increasing the apoptosis of liver cancer cells; G0/G1 phase cells increased while S phase cells decreased (4,5). In preliminary experiments, we found that QHF could inhibit metastasis of liver cancer cells; however, the underlying molecular mechanisms remain unclear.

The aim of the present study was to determine whether QHF inhibits the metastasis of liver cancer cells via its action on the mitogen-activated protein kinase (MAPK) pathway, which modifies signal amplification mechanisms in tumor metastasis. An understanding of the cascade reactions and the expression of genes and their interactions with other signaling pathways may provide novel insights and methods for the clinical treatment of liver cancer metastasis.
Materials and methods

Drugs. Huachansu injection (5 ml/dose) was purchased from Anhui Jinchan Biological Co., Ltd. (batch no. 120811-3; Anhui, China). 20(R)Ginseng saponin Rg3 standard (20 mg/bottle) was obtained from Shanghai Yuanye Biotechnology Co., Ltd. (batch no. 20120506; Shanghai, China). Lentivirus standard (1 g/bag) was obtained from Nanjing Zelang Medical Technology Co., Ltd., Nanjing, China). Xueisaitong injection (lyophilized; 400 mg/ampule) was purchased from Kunming Shenghuo Pharmaceutical Group Ltd. (batch no. 12GA12; Kunming, China), and DDP for injection (10 mg/branch) was obtained from Shenghuo Pharmaceutical Group Ltd. (Kunming, China), and DDP for injection (10 mg/branch) was obtained from Qilu Pharmaceutical Co., Ltd. (Kunming, China), and DDP for injection (10 mg/branch) was obtained from Shenghuo Pharmaceutical Group Ltd. (Kunming, China). 20(R)Ginseng saponin Rg3 standard (20 mg/bottle) was obtained from Jinchan Biochemical Co., Ltd. (Anhui, China), and DDP for injection (10 mg/branch) was obtained from Jinchan Biochemical Co., Ltd. (Anhui, China), and DDP for injection (10 mg/branch) was obtained from Jinchan Biochemical Co., Ltd. (Anhui, China).

Reagents and instruments. Dulbecco’s modified Eagle’s medium (DMEM) was purchased from Gibco-BRL (Grand Island, NY, USA). Fetal bovine serum (FBS) was purchased from Sigma (St. Louis, MO, USA). Trypsin was obtained from Shanghai Source Leaves Biological Technology, Ltd. (Shanghai, China). and MTT was purchased from Wuhan Boster Biological Technology, Ltd. (Wuhan, China). Matrigel® glue was obtained from Wuhan Kori Biological Technology, Ltd. (Wuhan, China). A Multiskan™ Spectrum full-wavelength enzyme standard instrument was obtained from Thermo Fisher Scientific (Waltham, MA, USA). An XS-213 optical microscope and a CKX41 inverted phase contrast microscope were purchased from Olympus Corp. (Tokyo, Japan).

Cell line and culture. The human HCC cell line HepG2 was obtained from the China Center for Type Culture Collection of Wuhan University (Wuhan, China). The cells were cultured in DMEM containing 10% FBS, 100 U/ml penicillin and 100 µg/ml streptomycin at 37°C in a humidified atmosphere containing 5% CO₂.

MTT assay. An MTT assay was used to detect cell viability following exposure of the HCC cells to QHF. The HepG2 cells were grown on 96-well plates, at a concentration of 2x10⁴ cells/well, incubated at 37°C in 5% CO₂ for 24 h and then treated with different concentrations of QHF (QHF1-5: 20, 40, 80, 160 and 320 µg/ml). Incubation was subsequently continued for 24, 48 and 72-h periods, respectively (5 wells/treatment group). A total of 20 µl MTT was added 4 h prior to the end of the final incubation time, and the cells were then incubated for a further 4 h. Following incubation, the density value for each well plate was determined using a microplate reader at a detection wavelength of 570 nm.

Cell scratch assay. Using a marker pen and a straight edge guide, lines were drawn evenly across each well on the reverse side of six-well tissue culture plates, with 6 rows per well at 0.5-cm intervals. Next, 1.5x10⁵ cells were aliquoted into each well, and a microscope was used the following day to confirm that each well was coated with cells. A needle was used to scratch and remove the cells from a discrete area of the confluent monolayer. Lines were marked using 10-µl spearheads along the ruler, perpendicular to the horizontal line scratches. The plates were washed with phosphate-buffered saline three times to remove the displaced scratched cells, and serum-free DMEM was added. Cells exposed to different concentrations of QHF (QHF1-5: 20, 40, 80, 160 and 320 µg/ml) and the appropriate control groups were cultivated simultaneously in an incubator at 37°C in 5% CO₂. At 0 and 24 h, images of the samples were captured, and the procedure was repeated three times.

Cell migration assay. Cell suspensions (100-µl) were sampled from the upper wells and exposed to different QHF concentrations (QHF1-3: 20, 40 and 80 µg/ml). The total volume of fluid in each chamber was 200 µl. A total of 600 µl DMEM containing 10% FBS was placed in each lower chamber and incubated at 37°C in 5% CO₂ for 24 h. Subsequently, the small indoor culture medium was discarded and the cells on the inner surface of the membrane were gently cleaned using cotton. The cells were exposed to 4% paraformaldehyde for 1 h for fixation and stained using crystal violet for 30 min. The cells were then washed with sterile water three times, and the membrane filter was gently placed on a microscope slide using forceps. The outside membrane cells were observed at x200 magnification using an optical microscope, and five fields were randomly selected to calculate an average cell count. This procedure was repeated three times.

Cell invasion assay. Transwell® chambers with a fiber membrane pore size of 8 µm were used. The lower compartment was filled with 600 µl serum media, containing 10% bovine serum albumin (BSA). The upper compartment was filled with 600 µl serum-free media, containing 10% BSA, and 1x10⁵/ml cell suspension was added in a 30-µl volume. The cells were incubated for 24 h at 37°C in a humidified 5% CO₂ atmosphere. The membrane was subsequently removed, fixed using methanol and stained using Giemsa. Five randomly selected fields were counted, and each sample was assayed in duplicate to give an average quantitative measure of the degree of invasiveness of each tumor cell.

Protein extraction and western blot analysis. Cells were collected and washed twice with ice-cold phosphate-buffered saline, prior to lysis with 100 µl radioimmunoprecipitation assay buffer (Takara Biotecnhology Co., Ltd., Dalian, China) for 30 min. For nuclear extraction the cells were lysed with Nuclear-Cytosol Extraction kit (Santa Cruz Biotechnology, Inc., Dallas, TX, USA), according to the manufacturer’s instructions. Lysates were centrifuged at 1613 x g for 10 min at 4°C. Total protein content was determined using bicinchoninic acid protein assay kit (Nanjing Jiacheng Bioengineering Institute, Nanjing, China). A total of 50 µg of proteins were subjected to 10% SDS-PAGE and transferred to a nitrocellulose membrane (Shanghai Source Leaves Biological Technology Ltd.). The membranes were blocked in Tris-buffered saline + Tween-20 (TBST; Beyotime Institute of Biotechnology, Haimen, China) containing 5% non-fat dried milk for 1 hour at room temperature, and then incubated overnight at 4°C with primary antibodies (1:800 dilution; ERK (cat. no. ab50011); p38 (cat. no. ab31828), JNK (cat. no. ab179461)) against extracellular signal-regulated kinase (ERK) and phosphorylated-(p-)
ERK (both Santa Cruz Biotechnology, Inc.), and p38, c-Jun N-terminal kinase (JNK), p-p38 and p-JNK (all Cell Signaling Technology, Inc., Beverly, MA, USA). The membranes were then washed with TBST three times and incubated with the corresponding secondary antibody (Goat anti-mouse IgG Fc, 1:3000 dilution; cat. no. ab97261; Sigma-Aldrich) for 1 h. The membranes were then washed again and the proteins were visualized using an enhanced chemiluminescence assay kit (Eastman Kodak, Rochester, NY, USA). Images were captured as a permanent record of the data.

Effect of ERK, JNK and p38 inhibitors on the inhibitory effect of QHF on liver cancer cell invasion. The experimental groups were as follows: Blank control, QHF4, QHF4 + JNK inhibitor (SP600125; JNK inhibitor concentration, 10 mM; Beyotime Institute of Biotechnology), QHF4 + p38 inhibitor (SB203580; p38 inhibitor concentration, 10 mM; Beyotime Institute of Biotechnology), QHF4 + ERK inhibitor (PD98059; ERK inhibitor concentration, 10 mM; Selleck Biological Technology, Nanjing, China). The method described for the cell invasion assay was followed.

Statistical analysis. Data are expressed as the mean ± standard deviation and a Student's t-test was performed for the statistical analysis of single comparisons. P<0.05 was considered to indicate a statistically significant difference.

Results

QHF inhibits liver cell proliferation. The results of the MTT assay demonstrated that 24, 48 and 72 h after the exposure of HepG2 cells to different concentrations of QHF, cell proliferation was inhibited in a concentration-dependent manner. As the QHF concentration increased, a more marked inhibitory effect was exerted against HepG2 cell proliferation (P<0.05). A significant difference was observed between the degrees of inhibition produced in each of the groups, although the inhibitory effect was not time-dependent. The inhibition rate in each of the concentration groups after 24 h was not reduced in the groups at 48 h; however, the largest inhibition rate was observed in the groups at 72 h (Table I).

Table I. Effect of QHF on the proliferation of HepG2 cells.

<table>
<thead>
<tr>
<th>Group</th>
<th>24 h OD ± SD</th>
<th>24 h IR (%)</th>
<th>48 h OD ± SD</th>
<th>48 h IR (%)</th>
<th>72 h OD ± SD</th>
<th>72 h IR (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.3642±0.013</td>
<td>-</td>
<td>0.4071±0.034</td>
<td>-</td>
<td>0.9335±0.028</td>
<td>-</td>
</tr>
<tr>
<td>QHF1</td>
<td>0.3112±0.010</td>
<td>14.45</td>
<td>0.3741±0.002</td>
<td>8.10</td>
<td>0.7424±0.038</td>
<td>20.47</td>
</tr>
<tr>
<td>QHF2</td>
<td>0.2886±0.009</td>
<td>20.75</td>
<td>0.3721±0.026</td>
<td>8.59</td>
<td>0.6537±0.030</td>
<td>29.97</td>
</tr>
<tr>
<td>QHF3</td>
<td>0.2834±0.011</td>
<td>22.18</td>
<td>0.3629±0.031</td>
<td>10.86</td>
<td>0.5505±0.028</td>
<td>41.03</td>
</tr>
<tr>
<td>QHF4</td>
<td>0.2369±0.003</td>
<td>34.96</td>
<td>0.3159±0.034</td>
<td>22.38</td>
<td>0.5963±0.018</td>
<td>59.63</td>
</tr>
<tr>
<td>QHF5</td>
<td>0.2074±0.021</td>
<td>43.05</td>
<td>0.2602±0.024</td>
<td>36.08</td>
<td>0.2658±0.009</td>
<td>71.53</td>
</tr>
<tr>
<td>DDP (5 µg/ml)</td>
<td>0.2857±0.017</td>
<td>21.56</td>
<td>0.2032±0.080</td>
<td>50.07</td>
<td>0.1419±0.011</td>
<td>84.79</td>
</tr>
</tbody>
</table>

Results are presented as the mean ± standard deviation (n=5). OD, optical density; IR, inhibition rate; DDP, cisplatin; QHF1, 20 µg/ml; QHF2, 40 µg/ml; QHF3, 80 µg/ml; QHF4, 160 µg/ml; QHF5, 320 µg/ml.

Figure 1. Cell scratch assay at 0 and 24 h. Control at (A) 0 h and (B) 24 h; QHF1 at (C) 0 h and (D) 24 h; QHF2 at (E) 0 h and (F) 24 h; QHF3 at (G) 0 h and (H) 24 h. QHF1, 20 µg/ml; QHF2, 40 µg/ml; QHF3, 80 µg/ml. Magnification, x40.

The effect of QHF on the proliferation of cells within 24 h of exposure to QHF1-QHF3 was limited, with an inhibition
rate of 14-22%; therefore, the following three concentrations were selected for subsequent experiments into cell invasion and metastasis.

QHF inhibits the invasion and metastasis of human HCC cells in vitro. An inverted microscope was used to observe the difference in the scratch cell areas of HepG2 cells within 24 h of QHF treatment. The results showed that the scratch damage zones of the QHF intervention groups were significantly reduced compared with those of the control group. In the QHF groups, it was difficult to detect cells migrating to the scratch area; by contrast, the scratch damage area of the control group was infiltrated with migrated liver cancer cells. These data suggest that QHF is able to inhibit HepG2 cell migration (Fig. 1).

QHF inhibits the migration of HepG2 cells. The cell migration assay results showed that the number of HepG2 cells passing through the membrane filter in the QHF intervention group was significantly reduced compared with that in the control group (P<0.05 or P<0.01), and the migration inhibition rate increased with concentration. It was therefore concluded that QHF exerted a marked concentration-dependent inhibitory effect.
on the ability of HepG2 cells to migrate. Compared with the control group, the number of cells migrating was significantly different in the groups exposed to various concentrations of QHF (P<0.05) (Fig. 2).

QHF inhibits the invasion of HepG2 cells. The cell invasion assay results were consistent with the migration assay results.

Compared with the control group, QHF significantly reduced the number of HepG2 cells migrating through the membrane filter (P<0.05 or P<0.01), and the invasive inhibition rate increased with the increase in QHF concentration. Thus, QHF exhibited marked inhibitory activity against the invasive ability of HepG2 cells in a concentration-dependent manner. A statistically significant difference was detected in cell number between the various QHF concentrations (QHF1-3: 20, 40 and 80 µg/ml) (P<0.05) (Fig. 3).

Effects of QHF on liver cancer metastasis are associated with MAPK. Using western blot analysis, it was demonstrated that,
that the MAPK signaling pathway is complicated in inhibit ERK signaling, while upregulating nuclear reactions, in addition to serving a crucial function in involved in the generation of extracellular signals that affect JNK. These pathways extensively regulate cells and are pathways have been identified in mammals: ERK, p38 and metastasis formation.

HCC remains as high as 61.5%, even following radical resec
cancer mortality to liver cancer in China each year, accounting for ~45% of liver according to clinical statistics, ~13 million individuals succumb to liver cancer in China each year, accounting for ~45% of liver mortality worldwide (6). The 5-year recurrence rate of HCC remains as high as 61.5%, even following radical resection (7); thus, metastasis is a serious therapeutic challenge. The invasion and metastasis of HCC cells is a complicated, multi-step process mediated by numerous factors, including reactions between tumor cells and host cells involved in tumor cell adhesion, the secretion of matrix metalloproteinases (MMPs), degradation of the extracellular matrix, the migration of tumor cells, tumor angiogenesis, tumor cell proliferation and metastasis formation.

MAPK is a serine/threonine protein kinase that is widespread in cells. Three primary MAPK signal transduction pathways have been identified in mammals: ERK, p38 and JNK. These pathways extensively regulate cells and are involved in the generation of extracellular signals that affect nuclear reactions, in addition to serving a crucial function in tumorigenesis, apoptosis and metastasis (8). Johansson et al (9) found that the p38-MAPK pathway was involved in squamous cell transformation and invasion. The ERK pathway is vital for the comprehensive regulation of cell growth, development and cell division, processes that mediate tumor development. Liang et al (10) and Kadowaki et al (11) showed that curcumin and tetrahydrocurcumin were able to affect the occurrence and development of HepG2 cells by inhibiting the expression of ERK in metastatic tumors in a nude mouse model. Furthermore, it has previously been indicated that ERK is able to promote extracellular matrix degradation and tumor angiogenesis by enhancing the proliferation of liver cancer cells or increasing the expression of MMP-2 and MMP-9, and this may be involved in the recurrence and metastasis of liver cancer (11). Numerous studies have shown that JNK is involved in the development of liver tumors; excessive activation of the JNK signaling pathway may affect normal liver cell proliferation and differentiation and lead to cancer (12-14). Win et al (12), who studied the effects of the mitochondrial protease SH3 domain-binding protein that preferentially associates with BTK (Sab) on liver cancer cells, observed that the continuous activation of JNK played a significant role in metastatic liver cancer cells and that the mitochondrial protease Sab had the ability to inhibit the activity of JNK.

The results of the present study suggest that the TCM formula QHF inhibited the proliferation of HepG2 cells and decreased their ability to invade and metastasize. Furthermore, QHF appeared to downregulate the expression of p-ERK and inhibit ERK signaling, while upregulating the expression of p-p38 and p-JNK and activating p38 and JNK signaling. The total ERK, p38 and JNK protein levels remained unchanged following treatment with inhibitors of ERK, p38 and JNK. The cell invasion assay indicated that the ERK inhibitor and QHF produced synergistic effects, while the JNK and p38 inhibitors partially reversed the QHF-mediated inhibition of liver cancer cell metastasis. These results suggest that the MAPK signaling pathway is associated with the QHF-mediated inhibition of HepG2 cell metastasis; however, the identification of specific downstream molecular targets requires further research.

The invasion and metastasis of HCC are complicated processes, both in terms of the complex biological characteristics of HCC and the close association between HCC and immune function, such as immune regulation and immune destructive capability. The present study indicates that QHF has the ability to significantly inhibit liver cancer invasion; therefore, QHF may represent a useful secondary pharmacological clinical treatment for liver cancer, which could improve the therapeutic outcomes of existing interventions.

Acknowledgements

This study was supported by a grant from the project of the Natural Science Foundation of Hubei (no. 2011CDA039).

References

