Clinical application of the Innovance D-dimer assay in the diagnosis of acute pulmonary thromboembolism

ZHUXIAO BAI1,2, YURONG HUANG3, CHENGHUA SONG3, HUIMIN LIU2, YIHUI CHEN3, HAITAO ZHANG1, XINHONG LU2, YINGBO SONG2 and XIN ZHANG2

1Clinical Laboratory, the First Affiliated Hospital of the Medical College, Shihezi University, Shihezi, Xinjiang 832000; 2Clinical Laboratory; 3Department of Respiratory Medicine, Hospital of Xinjiang Production and Construction Corps, Urumqi, Xinjiang 830002, P.R. China

Received September 16, 2015; Accepted January 26, 2017

DOI: 10.3892/etm.2017.4400

Abstract. Patients with acute pulmonary thromboembolism (APTE) have a high short-term mortality rate. The current study aimed to investigate the use of D-dimer in the diagnosis of APTE in suspected APTE patients. All suspected APTE patients were classified into diagnosis or control groups according to the results of a computed tomography pulmonary angiogram. Mann-Whitney U and Kruskal-Wallis H tests were used to evaluate the association between D-dimer values and APTE. Area under the curve (AUC) values and the Youden Index were used to determine D-dimer cut-off levels for the prediction of APTE. The data of 112 suspected APTE patients (54.8% women; mean age, 70.5 years) were analyzed prospectively. There were no significant differences in age (74.5 vs. 73.5 years, P=0.538) or gender distribution (female ratio 56.5 vs. 53.0%, P=0.847) between the diagnosis and control groups. The incidence of symptoms including dyspnea (67.4 vs. 33.3%; P<0.01), chest distress (47.8 vs. 25.8%; P<0.05) and elevated D-dimer (8.49 vs. 0.97 mg/l; P<0.001) were significantly higher in patients with APTE compared with the control group. D-dimer values >3.32 mg/l fibrinogen equivalent units (FEU) were indicative of APTE and the Youden Index was 0.69. The maximum AUC was 0.87 (95% CI: 0.79-0.92), the sensitivity and specificity were 89.13 and 80.30%, respectively, the positive and negative likelihood ratios were 4.53 and 0.14, respectively, and the positive and negative predictive values were 75.90 and 91.40%, respectively. A D-dimer value <0.60 mg/l FEU was the optimal threshold for excluding APTE diagnosis, with a sensitivity of 100.0% and a specificity of 28.79%. The positive and negative likelihood ratios were 1.40 and 0.00, respectively, and the positive and negative predictive values were 49.50 and 100.00%, respectively. Thus, D-dimer levels, combined with clinical assessment, yield high sensitivity and specificity in diagnosing APTE.

Introduction

Pulmonary thromboembolism (PTE) is a pulmonary circulation dysfunction caused by thrombotic occlusion of the pulmonary artery (1-3). Acute PTE (APTE) is a cardiovascular emergency associated with high morbidity and mortality (4-9). Computed tomography pulmonary angiogram (CTPA) is the gold standard for APTE diagnosis, with a sensitivity of 90% and a specificity of 78-100% (10-12). However, CTPA is an expensive procedure and has some technical limitations, which restrains its clinical application in many hospitals. A plasma D-dimer test is commonly the first step in patient APTE risk assessment, and is considered to have clinical value (13-15).

D-dimer is a soluble degradation product of crosslinked fibrin under the action of the fibrinolytic system. An elevated concentration of D-dimer is often suggestive of secondary fibrinolytic hyperthyroidism (15). The high negative predictive value of plasma D-dimer makes it an important criterion for excluding PTE diagnosis. However, since elevated concentrations of D-dimer are associated with a variety of diseases, its diagnosis specificity for PTE is poor (16-18). Previous studies have suggested that high plasma D-dimer levels combined with clinical assessment (e.g. Wells’ criteria) can improve the specificity of PTE diagnosis (19,20). However, no consistent standard has been established for the critical value of plasma D-dimer (21). The medical decision level (MDL) of test items is often used to determine the standard, and the receiver operating characteristic (ROC) curve is commonly used to determine the MDL (22,23).

In the current prospective study, Wells’ clinical assessments were performed for suspected APTE patients who
were admitted to the Respiratory Medicine Department of the Hospital of Xinjiang Production and Construction Corps (Urumqi, China). An Innova assay was used to determine plasma D-dimer levels, and patients were divided into a diagnosis group and a control group according to the results of CTPA and their medical history. The MDL of plasma D-dimer levels in the diagnosis of APTE was also analyzed using an ROC curve, in order to establish a critical value for D-dimer.

Materials and methods

Study protocol. The current study was a prospective analysis of 112 patients with suspected APTE, who were treated in the Respiratory Medicine Department of the Hospital of Xinjiang Production and Construction Corps between August 2012 and November 2014. The present study was approved by the Ethics Committee of Xinjiang Production and Construction Corps Hospital. Written informed consent was obtained from all patients prior to initiation of the study. The diagnosis and treatment process of this disease was in line with previous studies (14,24,25). All clinically evaluated patients with suspected APTE underwent CTPA and other laboratory tests within 24 h of admission, and before treatment was administered.

Enrolled subjects. The inclusion criteria for patients with suspected APTE were as follows: i) Clinical manifestations that included unexplained sudden onset of chest pain, dyspnea, hemoptysis, coughing, asphyxia, cyanosis, hypoxemia, palpitations, syncope or shock; ii) the presence of typical risk factors of pulmonary embolism, including deep vein thrombosis (DVT), prolonged bed rest, chronic heart and pulmonary disease, fracture history, history of surgery, cancer, childbirth or oral contraceptives. The inclusion criteria for first onset of APTE cases were as follows: i) If patients were diagnosed with APTE and had no previous history of APTE, ii) if this disease was diagnosed within 14 days of onset, and thrombolytic therapy was effective.

All of the patients with suspected APTE were divided into the diagnosis group (first onset of APTE patients) and the control group (excluded APTE diagnosis patients) according to their CTPA examination and medical history. Patients with chronic PTE and recurrent PTE were excluded, as were deceased patients who were diagnosed with APTE without CTPA examination.

Wells’ criteria scores were used to evaluate the pre-test probability for APTE (Table I) (26). These scores were judged by two physicians, and if inconsistencies were present, the final judgment was made by a third physician. Patients with a score of >4 were assessed as high suspected APTE; patients with a score of ≤4 were assessed as low suspected APTE.

Laboratory parameters. Plasma D-dimer levels were evaluated using an automated latex-enhanced quantitative immunoturbidimetric assay, performed with a Sysmex CA-1500 instrument (Sysmex Corporation, Kobe, Japan). The Innova D-Dimer kit and its quality control materials and calibrators were produced by Siemens AG (Munich, Germany). According to the manufacturer's instructions, a value of 0.5 mg/l fibrinogen equivalent units (FEU) was selected as the threshold for excluding thromboembolic diseases. The subjects were segregated on the basis of their serum D-dimer levels into those with positive (>0.5 mg/l FEU) or negative (≤0.5 mg/l FEU) values.

Cardiac Troponin I (cTnI) levels were determined using the ADVIA Centaur CP Immunossay System (Siemens AG), with a cut-off value of 0.04 ng/ml (positive cTnI ≥0.04 ng/ml, negative cTnI <0.04 ng/ml).

Technical examinations. CTPA was performed with a 640-MDCT scanner (Aquilion One TSX-301A; Toshiba Medical Systems Corporation, Otawara, Japan). The patients received 100 ml iopamidol (Isovue 370; Bracco S.p.A., Milan, Italy) at an intravenous flow rate of 4 ml/sec, followed by flushing with 50 ml normal saline solution. Imaging was performed 15-20 sec after contrast administration, determined with a precise contrast tracking system (SureStart; Toshiba Medical Systems Corporation). The diagnostic criteria of APTE were based on previous studies (27,28).

Color Doppler ultrasound (GE Healthcare Bio-Sciences, Pittsburgh, PA, USA) was used to detect the formation of DVT. The diagnostic criteria were based on a previous study (29). Echocardiographic detection (color Doppler ultrasound; GE Healthcare Bio-Sciences) was used to evaluate the function of the right ventricle. The criteria of right ventricular dysfunction were based on previous studies (4,6) and included right ventricular enlargement (end diastolic diameter >30 mm or right/left ventricular diastolic diameter ratio >0.6), right ventricular hypokinesia, abnormal movement of the ventricular septum and right pulmonary arterial hypertension (>30 mmHg). Patients were diagnosed with right ventricular dysfunction if more than one of these symptoms was detected.

The risk stratification criteria for APTE are shown in Table II. There were three categories for stratification: Hemodynamic instability, such as the presence of shock and hypotension (systolic blood pressure <90 mmHg or blood pressure decreased by 40 mmHg for 15 min); right ventricular dysfunction; and biochemical markers that suggested myocardial injury, such as positive cTnI.

Statistical analysis. SPSS 17.0 (SPSS, Inc., Chicago, IL, USA) and MedCalc 15.2.2 (MedCalc Software bvba, Ostend, Belgium) software packages were used for data processing. Quantitative data were analyzed using the chi-squared test. Measurement data are presented as the mean ± standard deviation. The Mann-Whitney U test was used to compare results between two groups and the Kruskal-Wallis H test was used to compare the results of multiple groups. P<0.05 was considered to indicate a statistically significant difference. The plasma D-dimer data of the APTE diagnosis group and the control group were used to produce an ROC curve. The AUC was calculated and the optimal threshold in the diagnosis of APTE was determined as the MDL for D-dimer, which was the evaluated as the critical value.

Results

Patient grouping. Between August 2012 and November 2014, a total of 112 patients were included in this study. They were divided into a diagnosis group (first onset APTE patients,
n=46, 41.1%) and a control group (n=66, 58.9%). The characteristics of the two groups are shown in Table III. There were no significant differences in the age (74.5 vs. 73.5 years; P=0.538) or gender distribution (female ratio 56.5 vs. 53.0%, P=0.847) between the diagnosis and control groups.

Patient characteristics. The occurrence of dyspnea (67.4 vs. 33.3%; P<0.01) and chest distress (47.8 vs. 25.8%; P<0.05) was significantly higher in the diagnosis group than the control group. For the risk factors, the frequency of coronary heart disease (39.1 vs. 15.2%; P<0.01) and diabetes (26.1 vs. 10.6%, P<0.05) was significantly higher in the diagnosis group compared with the control group, while the occurrence of chronic lung disease was significantly lower in the diagnosis group (19.6 vs. 39.4%; P<0.05). The frequency of DVT in the diagnosis group was significantly higher than the control group (22.7 vs. 0%; P<0.001). A S_QIII_TIII-TIII-type ECG result was also significantly more frequent in the diagnosis group than the control group (13.0 vs. 6.3%; P<0.05).

Wells' criteria scores. In the diagnosis group, 25 (54%) patients were classified as low suspected APTE, with Wells' criteria scores of 2.90±0.74; 21 (46%) patients were classified as high suspected APTE, with Wells' criteria scores of 4.67±0.43. The plasma D-dimer levels of both subgroups are shown in Fig. 1. There was no significant difference in plasma D-dimer level between the low suspected APTE group and the high suspected APTE group (P=0.68).

Risk stratification. According to the risk stratification results, there were 6 high-risk patients (13%), 29 moderate-risk patients (63%) and 11 low-risk patients (24%) in the diagnosis group. The plasma D-dimer levels in those patients are shown in Fig. 2. No significant difference in D-dimer levels was found between the groups (P=0.29).

Plasma D-dimer levels. The plasma D-dimer level of all patients in the diagnosis group was >0.50 mg/l FEU. The concentration distributions ranged from 0.60 to 40.00 mg/l FEU, with a median of 8.49 mg/l FEU and a mean of 25.29 mg/l FEU. In the control group, the plasma D-dimer level of some patients was lower than 0.5 mg/l FEU, although the concentration distributions ranged from 0.10 to 25.29 mg/l FEU, with a median of 0.95 mg/l FEU and a mean of 2.80±4.55 mg/l FEU. The D-dimer level was significantly higher in the diagnosis group than the control group (P<0.001; Fig. 3).

ROC curve analysis. Analysis of the ROC curve showed an AUC of 0.87 for the prediction of APTE by D-dimer level (95% CI 0.79-0.92). Plasma D-dimer values >3.32 mg/l FEU were indicative of APTE. The Youden Index cut-off value for D-dimer predicting APTE was 0.69. Its sensitivity was 89.13%, specificity was 75.90% and negative predictive value was 91.40%. The positive and negative likelihood ratios were 4.53 and 0.14, respectively. A plasma D-dimer value <0.60 mg/l FEU was the optimal critical value to exclude APTE diagnosis. A D-dimer value of 0.60 mg/l FEU was the optimal threshold to exclude APTE. A D-dimer value <0.60 mg/l FEU was used to exclude APTE, and the sensitivity, specificity, positive and negative predictive values were 100.00, 28.79, 49.50 and 100.00%, respectively. The positive and negative likelihood ratios were 1.00 and 0.00, respectively. The ROC curve is shown in Fig. 4.

Discussion

Elevated plasma D-dimer levels are associated with a variety of diseases, such as thrombosis, inflammation, malignant tumor, liver disease, trauma and cardiovascular disease (17,20,22).
Previous studies have suggested that plasma D-dimer is an important indicator to exclude DVT and PTE, as its negative predictive value is more than 99%, but its diagnosis specificity is only 40-43% (19, 20, 30). Patients in the current study were admitted to hospital with respiratory diseases as their main symptoms. All suspected APTE patients were evaluated by physicians, and were divided into a diagnosis group and a control group according to CTPA examination. The results demonstrated that the plasma D-dimer levels of patients in the diagnosis group were higher than those of patients in the control group. Analysis of the ROC curve suggested that plasma D-dimer values >3.32 mg/l FEU were indicative of APTE, with a Youden Index of 0.69. The sensitivity and specificity were 89.13 and 80.30%, respectively.

The signs and symptoms of APTE lack specificity. Wells’ clinical assessment was performed on all patients, firstly after admission and then after APTE diagnosis by CTPA examination. The results showed that 54% of patients in the diagnosis group were considered to have low suspected APTE, and the remaining patients were assessed as high suspected APTE. There was no significant difference between the Innovance assay-measured plasma D-dimer levels in the low suspected and high suspected APTE groups. This suggested that the symptoms and signs of APTE lacked specificity, and that the Wells’ score has some subjective factors. Although patients were assessed as low suspected APTE by their Wells’ scores, a diagnosis of APTE should not be dismissed in order to avoid misdiagnosis. In 46 first onset APTE patients, the most common risk factors were aging, hypertension, coronary heart disease and diabetes. Therefore, particular care should be taken in diagnosing ATPE in elderly patients with hypertension, coronary heart disease or diabetes, even if a Wells’ clinical assessment gives a low suspected APTE result.

Table III. Characteristics of the diagnosis and control groups.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Diagnosis group (n=46)</th>
<th>Control group (n=66)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gender (women), % (n)</td>
<td>56.5 (26)</td>
<td>53 (35)</td>
<td>0.847</td>
</tr>
<tr>
<td>Age, years (range)</td>
<td>74.5 (64.8-81.0)</td>
<td>73.5 (66.8-79.0)</td>
<td>0.538</td>
</tr>
<tr>
<td>Symptoms</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dyspnea, % (n)</td>
<td>67.4 (31)</td>
<td>33.3 (22)</td>
<td>0.001*</td>
</tr>
<tr>
<td>Chest distress, % (n)</td>
<td>47.8 (22)</td>
<td>25.8 (17)</td>
<td>0.043*</td>
</tr>
<tr>
<td>Cough, % (n)</td>
<td>39.1 (18)</td>
<td>54.5 (36)</td>
<td>0.127</td>
</tr>
<tr>
<td>Chest pain, % (n)</td>
<td>19.6 (9)</td>
<td>9.1 (6)</td>
<td>0.158</td>
</tr>
<tr>
<td>Syncope or collapse, % (n)</td>
<td>13.0 (6)</td>
<td>3.0 (2)</td>
<td>0.062</td>
</tr>
<tr>
<td>Hemoptysis, % (n)</td>
<td>10.9 (5)</td>
<td>15.2 (10)</td>
<td>0.583</td>
</tr>
<tr>
<td>Pulmonary infarction triad, % (n)</td>
<td>4.3 (2)</td>
<td>0 (0)</td>
<td>0.167</td>
</tr>
<tr>
<td>Risk factors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aging, % (n)</td>
<td>87.0 (40)</td>
<td>74 (54)</td>
<td>0.603</td>
</tr>
<tr>
<td>Hypertension, % (n)</td>
<td>50.0 (23)</td>
<td>33.3 (22)</td>
<td>0.083</td>
</tr>
<tr>
<td>Coronary heart disease, % (n)</td>
<td>39.1 (18)</td>
<td>15.2 (10)</td>
<td>0.004*</td>
</tr>
<tr>
<td>Diabetes, % (n)</td>
<td>26.1 (12)</td>
<td>10.6 (7)</td>
<td>0.041*</td>
</tr>
<tr>
<td>Smoking, % (n)</td>
<td>23.9 (11)</td>
<td>33.3 (22)</td>
<td>0.302</td>
</tr>
<tr>
<td>Chronic lung disease, % (n)</td>
<td>19.6 (9)</td>
<td>39.4 (26)</td>
<td>0.038*</td>
</tr>
<tr>
<td>Pulmonary infection, % (n)</td>
<td>17.4 (8)</td>
<td>43.5 (20)</td>
<td>0.183</td>
</tr>
<tr>
<td>Prolonged bed rest, % (n)</td>
<td>13.0 (6)</td>
<td>7.6 (6)</td>
<td>0.354</td>
</tr>
<tr>
<td>Atrial fibrillation, % (n)</td>
<td>6.5 (3)</td>
<td>6.1 (4)</td>
<td>1.000</td>
</tr>
<tr>
<td>Trauma/fracture, % (n)</td>
<td>4.3 (2)</td>
<td>0 (0)</td>
<td>0.167</td>
</tr>
<tr>
<td>Surgery, % (n)</td>
<td>4.3 (2)</td>
<td>4.5 (3)</td>
<td>1.000</td>
</tr>
<tr>
<td>Malignant tumor, % (n)</td>
<td>4.3 (2)</td>
<td>7.6 (5)</td>
<td>0.698</td>
</tr>
<tr>
<td>Cerebral infarction, % (n)</td>
<td>2.2 (1)</td>
<td>3.0 (2)</td>
<td>1.000</td>
</tr>
<tr>
<td>Long-distance travel (sedentary), % (n)</td>
<td>2.2 (1)</td>
<td>0 (0)</td>
<td>0.411</td>
</tr>
<tr>
<td>Oral contraceptives, % (n)</td>
<td>2.2 (1)</td>
<td>0 (0)</td>
<td>0.411</td>
</tr>
<tr>
<td>Deep vein thrombosis, %<sup>a</sup></td>
<td>22.7 (10/44)</td>
<td>0 (0/57)</td>
<td>0.000<sup>b</sup></td>
</tr>
<tr>
<td>SIQIII-TIII-type electrocardiogram, % (n)</td>
<td>13.0 (6)</td>
<td>6.3 (1)</td>
<td>0.019<sup>b</sup></td>
</tr>
</tbody>
</table>

^a(Number of patients diagnosed with deep vein thrombosis/number of cases treated with lower extremity venous Doppler ultrasonography). Continuous variables are described by the median, 25 and 75th percentile if they had a skewed distribution (skewness >1). Nearly normally distributed variables are presented as the mean ± standard deviation. Discrete variables are described through relative and absolute frequencies. Discrete variables were tested with the Chi-squared test and contingency tables; continuous variables with skewed distribution were analyzed with the Mann-Whitney U test. ^bP<0.05 vs. control group.
Common symptoms in first onset APTE patients in the current study were dyspnea, chest distress, coughing and chest pain. However, there were only two patients displaying a typical pulmonary infarction triad (dyspnea, chest pain and hemoptysis). Dyspnea was the most common symptom, displayed by 67% of APTE patients to varying degrees. However, dyspnea is also the most common symptom of acute exacerbation of chronic obstructive pulmonary disease (COPD), which could lead to misdiagnosis.

In the current study, venous pressure Doppler ultrasonography was performed on 44 first onset APTE patients. The results showed that 10 of the patients had DVT (23%), suggesting the formation of DVT may be associated with the pathogenesis of APTE. Previous results have suggested that the coincidence of pulmonary embolism and DVT is 44% (23).

The control group in the present study consisted of patients with a suspected ATPE diagnosis following clinical evaluation, but for whom an APTE diagnosis was then excluded by CTPA examination. The Innovance-determined plasma D-dimer levels were significantly higher in the diagnosis group than the control group. This suggested that plasma D-dimer level had a high diagnostic value for APTE after clinical evaluation. An ROC curve of Innovance-determined plasma D-dimer levels in the diagnosis of APTE was established based on the plasma D-dimer levels of the diagnosis and control groups. The results showed that 3.32 mg/l FEU plasma D-dimer was the optimal critical value (or MDL) in APTE diagnosis, and its sensitivity and specificity were 89.13 and 80.30%, respectively. Thus, plasma D-dimer level can serve as a report limit in the diagnosis of APTE in respiratory medicine. A limitation of the present study was that the number of cases used was small. Further research with a larger sample size is required to confirm the results demonstrated in the present study. In conclusion, Innovance-determined plasma D-dimer level, combined with clinical assessment, has high sensitivity and specificity in the diagnosis of APTE.

Acknowledgements

The authors would like to thank the Hospital of Xinjiang Production and Construction Corps (grant no. YJ2014002) for supporting this study.
References

