Therapeutic effects of stemonine on particulate matter 2.5-induced chronic obstructive pulmonary disease in mice

JINBO ZHANG¹, SHIQING LI², LI SUN³, YANXIA CHEN⁴, LEI ZHANG⁵ and ZHENGHUI ZHANG¹

¹Center for Preventive Treatment of Disease; Departments of ²Encephalopathy, ³Gynecology and Obstetrics, ⁴Rehabilitation and ⁵Heart Disease, Yantai Hospital of Traditional Chinese Medicine, Yantai, Shandong 264016, P.R. China

Received November 17, 2016; Accepted June 6, 2017

DOI: 10.3892/etm.2017.5092

Abstract. Particulate matter 2.5 (PM2.5) is a growing concern worldwide due to its association with respiratory diseases, including chronic obstructive pulmonary disease (COPD). Stemonine, a traditional Chinese herb, has been demonstrated to exhibit anti-inflammatory and antioxidant properties, making it a potential drug for the treatment of respiratory diseases. The therapeutic effects of stemonine on mice with PM2.5-induced COPD were investigated in the present study. Kunming mice were randomly divided into the following five groups (n=10/group): Control, model, low-dose stemonine, moderate-dose stemonine, and high-dose stemonine. The model mice received an intranasal instillation of PM2.5 suspension (40 mg/kg). The levels of specific enzymes, markers of oxidative stress, and the inflammatory cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 were measured in the bronchoalveolar lavage fluid of the mice using ELISA kits. Hematoxylin and eosin staining was performed to determine inflammatory changes to the lung tissue. It was demonstrated that stemonine could significantly alleviate lung injury by decreasing the levels of enzymes and cytokines associated with inflammation and oxidative stress in a dose-dependent manner. In addition, stemonine dose-dependently increased the amount of superoxide dismutase. These results suggest that stemonine reduces lung inflammation in mice with PM2.5-induced COPD, providing a novel approach for the treatment of PM2.5-induced respiratory diseases.

Introduction

A contaminated atmospheric environment, including that in numerous Chinese regions suffering from fog and haze, has a serious impact on human health. The increasing levels of mortality and morbidity due to lung infection and respiratory diseases are attributed to elevated levels of particulate matter (PM), particularly small inhalable particles like PM2.5 (1).

PM2.5 is a type of PM that is ≤2.5 μm in diameter. The physical damage caused by PM is associated with its size; the smaller the size, the greater damage it causes. In addition, PM2.5 accumulates toxic heavy metals, acid oxides, organic pollutants, bacteria and viruses in the air, PM2.5 can also remain in the air for a long time and be deposited in the lungs through inhalation, so it is a major threat to human health (2,3). Numerous previous studies have suggested that PM2.5 can stimulate the production of reactive oxygen species (ROS) and certain inflammatory mediators, resulting in changes to vascular permeability, airway constriction and tissue injury (4–6). The majority of previous studies investigating PM2.5 have histopathologically examined lung sections (7,8).

Chronic obstructive pulmonary disease (COPD) is characterized by airway obstruction due to the destruction of lung parenchyma, structural alterations of the small airways and systemic inflammation (9). COPD is a major cause of morbidity and mortality globally, and knowledge about its pathogenesis has increased substantially over the past decade (9,10). The primary risk factor for COPD is prolonged cigarette smoking (11). Another risk factor for COPD is chronic environmental exposure to toxic atmospheric pollutants, including PM (2–4). Several mechanisms of action have been proposed for the anti-inflammatory efficacy of antibiotics and traditional Chinese medicines (TCMs) on respiratory diseases, including COPD, house dust mite-induced allergic asthma, resistance of Klebsiella pneumoniae, and ventilator-associated pneumonia (12–15). However, the efficacy of such antibiotics was limited by their side effects in clinical trials, which included vomiting, diarrhea, weight loss and headaches (16–18). At present, no effective control measures have been developed for the treatment of PM2.5-induced respiratory diseases apart from reducing PM2.5 emissions, wearing a dust respirator and increasing the number of plants. Therefore, novel medicines with fewer side effects and a high efficacy for treating PM2.5-induced respiratory diseases are required.

A TCM extracted from Stemona tuberosa, stemonine, has been applied for insecticidal and medicinal purposes (19). S. tuberosa is found in certain regions of Japan and China, and its root can be used to obtain stemonine. In TCM it is believed that the external use of stemonine deters mosquitoes and that
its oral administration can relieve a cough. In previous studies, several types of stemonine were used to treat chronic lung diseases, including chronic bronchitis, pneumonia, asthma and COPD, through antibacterial action, resolving phlegm and relaxing bronchial smooth muscle (20-22).

In the present study, the effects of stemonine and its mechanism of action were investigated in mice with PM$_{2.5}$-induced COPD. The results revealed that stemonine attenuated acute PM$_{2.5}$-induced lung inflammation by inhibiting the infiltration of inflammatory cells. These results suggest that stemonine is a potential candidate for the treatment of respiratory diseases.

Materials and methods

Animals and reagents. A total of 50 adult male Kunming mice aged 6-8 weeks and weighing 20-22 g were housed in a pathogen-free environment with a 12 h light/dark cycle at room temperature (20±2°C) with a relative humidity of 50-70%. All animal protocols were conducted in accordance with the Declaration of Helsinki and the Guide for the Care and Use of Laboratory Animals. The present study was approved by the Ethics Committee of Yantai Hospital of Traditional Chinese Medicine (Yantai, China).

All chemicals and solvents used were of analytical grade. The lactate dehydrogenase (LDH, ml002267), alkaline phosphatase (AKP, ml000235), acidic phosphatase (ACP, ml037464), albumin (ALB, ml037889), nitric oxide (NO, ml022390), nitric oxide synthase (NOS, ml001884), malondialdehyde (MDA, ml016824) and superoxide dismutase (SOD, ml001998) ELISA kits were obtained from Shanghai Zhongshan Bioengineering Institute, Nanjing, China.

Source and separation of PM$_{2.5}$. Urban airborne PM$_{2.5}$ was collected with a Thermo Anderson sampler (PDR-1500; Thermo Fisher Scientific, Inc., Waltham, MA, USA) in Yantai, China for 2 consecutive weeks in January 2016. Subsequently, the sampling filter membrane was cut into 3x2 cm sections and immersed in ultrapure water for ultrasonic oscillation (room temperature; 100 kHz; four times, 30 min each). After filtration with gauze, the filtrate was centrifuged at 16,060 x g for 20 min at room temperature. After centrifugation, the supernatant was removed and the precipitation was collected into physiological saline (PS), autoclave-sterilized, freeze-dried and stored at 4°C until required.

COPD model establishment and administration. The model mice (n=40) received intranasal instillation of 20 µl of PM$_{2.5}$ suspension (40 mg/kg) once a day for 7 consecutive days, whereas mice in the control group (n=10) received the same amount of PS. The model mice were then randomly divided into the following four groups (n=10/group): Model group (40 mg/kg PM$_{2.5}$), low-dose stemonine (LS) treatment group (45 mg/kg stemonine), moderate-dose stemonine (MS) treatment group (90 mg/kg stemonine) and the high-dose stemonine (HS) treatment group (180 mg/kg stemonine). Stemonine was obtained from Beijing Kangrentang Pharmaceutical Co. (Beijing, China; batch no. 15009731). The treatment period lasted for 21 days, with treatment occurring once daily. All of the mice were checked daily for their general condition including physical appearance and behavior of mice, including hair condition, liveliness, sensitivity and respiratory murmur. A total of 24 h after the last intranasal instillation, the mice were sacrificed. The left upper lobe of the lungs was removed for hematoxylin and eosin (H&E) staining, and bronchoalveolar lavage fluid (BALF) and lung specimens were collected for further analysis.

BALF analysis. BALF was obtained by injecting 1 ml of 1X PBS and withdrawing as much fluid as possible according to the procedure used by Chen et al (13). BALF was then centrifuged at 200 x g for 10 min at 4°C. The obtained supernatants were used to detect the levels of LDH, AKP, ACP, ALB, NO, NOS, MDA and SOD with the aforementioned kits according to the manufacturer's protocol. Levels of the cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-6 in the BALF were analyzed using ELISA kits according to the manufacturer's protocol (H052 and H007; Nanjing Jiancheng Bioengineering Institute, Nanjing, China).

Lung histology. The lung samples (left upper lobe of the lungs) from each group were fixed with 10% buffered formalin solution at room temperature for 24 h. The fixed lung tissues were dehydrated, embedded in paraffin and sectioned (5 µm). H&E staining was performed at room temperature for 5-10 min each to determine inflammatory changes to the lung tissue. The specimens were then examined using light microscopy for the effects of inflammation, including infiltrates, thickened alveolar septae, pus and cell hyperplasia.

Statistical analysis. Comparisons between groups were analyzed by one-way analysis of the variance followed by Fisher's least significant difference test. Results are expressed as the mean ± standard deviation. P<0.05 was considered to indicate a statistically significant difference.

Results

Stemonine improves the physical appearance and behavior of mice with PM$_{2.5}$-induced COPD. Throughout the experimental period, mice in the control group had shiny hair, and were lively and sensitive, whereas the COPD model mice exhibited shaggy hair, and appeared listlessness and unresponsive, in addition to having a respiratory murmur (data not shown). Furthermore, the mean body weight of the LS, MS and HS groups was higher compared with that of the model group (data not shown).

Stemonine decreases pulmonary inflammation in mice with PM$_{2.5}$-induced COPD. To evaluate the effect of stemonine on the biomembrane and parenchyma in the lungs of the mice, biochemical markers in the BALF were measured, including LDH, ACP, AKP and ALB (Fig. 1 and Table I). Compared with the control group mice that received PS, the model mice that received PM$_{2.5}$ had significantly higher levels of LDH, ACP, AKP and ALB (all P<0.05), indicating more pulmonary inflammation. However, the groups treated with stemonine (45, 90 and 180 mg/kg) exhibited a significant decrease in LDH, ACP, AKP and ALB compared with the model group (all P<0.05). These results suggest that stemonine has a
dose-dependent negative effect on the levels of LDH, ACP, AKP and ALB.

Stemonine decreases the levels of oxidative stress markers in mice with PM2.5-induced COPD. The activity of SOD and NOS, and the amount of NO and MDA were measured in the BALF of the different groups using ELISA kits (Fig. 2 and Table II). SOD activity was measured through the reduction of xanthine oxidase to uric acid and H2O2, which reduces nitroblue tetrazolium (NBT) to NBT-formazan (23). The activity of NOS, and the levels of NO and MDA in the LS, MS and HS groups was significantly decreased compared with the model group (all P<0.05). In addition, the activity of SOD was significantly increased in the LS, MS and HS groups compared with the model group (P<0.05). These data indicate that stemonine inhibits the oxidative stress induced by PM2.5 in the lungs of mice.

Table I. Stemonine decreases the levels of LDH, ACP, AKP and ALB in mice with particulate matter 2.5-induced chronic obstructive pulmonary disease.

<table>
<thead>
<tr>
<th>Group</th>
<th>LDH (U/l)</th>
<th>ACP (U/l)</th>
<th>AKP (U/l)</th>
<th>ALB (mg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>112.975±6.562</td>
<td>1.642±0.136</td>
<td>4.653±0.247</td>
<td>0.064±0.023</td>
</tr>
<tr>
<td>Model</td>
<td>405.634±18.693</td>
<td>3.854±0.0623</td>
<td>8.795±0.312</td>
<td>0.198±0.264</td>
</tr>
<tr>
<td>LS</td>
<td>314.564±8.126</td>
<td>3.101±0.282</td>
<td>7.582±0.196</td>
<td>0.159±0.132</td>
</tr>
<tr>
<td>MS</td>
<td>221.721±9.124</td>
<td>2.551±0.362</td>
<td>6.538±0.264</td>
<td>0.105±0.067</td>
</tr>
<tr>
<td>HS</td>
<td>125.623±8.643</td>
<td>2.602±0.328</td>
<td>5.315±0.169</td>
<td>0.079±0.153</td>
</tr>
</tbody>
</table>

LDH, lactate dehydrogenase; ACP, acidic phosphatase; AKP, alkaline phosphatase; ALB, albumin; LS, low-dose stemonine; MS, moderate-dose stemonine; HS, high-dose stemonine. *P<0.05 vs. the control group; P<0.05 vs. the model group.

Figure 1. Stemonine decreases the levels of LDH, ACP, AKP and ALB in mice with particulate matter 2.5-induced chronic obstructive pulmonary disease. Levels of (A) LDH, (B) ACP, (C) AKP and (D) ALB in the bronchoalveolar fluid. LDH, lactate dehydrogenase; ACP, acidic phosphatase; AKP, alkaline phosphatase; ALB, albumin; LS, low-dose stemonine; MS, moderate-dose stemonine; HS, high-dose stemonine. *P<0.05 vs. the control group; #P<0.05 vs. the model group.
Table II. Stemonine decreases the levels of MDA, NO and NOS, and increases the level of SOD, in mice with particulate matter 2.5-induced chronic obstructive pulmonary disease.

<table>
<thead>
<tr>
<th>Group</th>
<th>MDA (nmol/ml)</th>
<th>NO (µmol/l)</th>
<th>NOS (U/ml)</th>
<th>SOD (U/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>0.729±0.098</td>
<td>4.219±0.494</td>
<td>2.783±0.147</td>
<td>26.895±0.891</td>
</tr>
<tr>
<td>Model</td>
<td>1.791±0.524<sup>a</sup></td>
<td>13.712±0.628<sup>a</sup></td>
<td>5.962±0.135<sup>a</sup></td>
<td>13.246±0.628<sup>a</sup></td>
</tr>
<tr>
<td>LS</td>
<td>1.568±0.319<sup>a,b</sup></td>
<td>11.597±0.352<sup>a,b</sup></td>
<td>4.983±0.103<sup>a,b</sup></td>
<td>16.163±0.52<sup>a,b</sup></td>
</tr>
<tr>
<td>MS</td>
<td>1.335±0.208<sup>a,b</sup></td>
<td>8.846±0.523<sup>a,b</sup></td>
<td>3.893±0.136<sup>a,b</sup></td>
<td>19.682±0.424<sup>a,b</sup></td>
</tr>
<tr>
<td>HS</td>
<td>1.165±0.128<sup>a,b</sup></td>
<td>7.471±0.493<sup>a,b</sup></td>
<td>3.013±0.114<sup>a,b</sup></td>
<td>23.936±0.431<sup>a,b</sup></td>
</tr>
</tbody>
</table>

MDA, malondialdehyde; NO, nitric oxide; NOS, NO synthase; SOD, superoxide dismutase; LS, low-dose stemonine; MS, moderate-dose stemonine; HS, high-dose stemonine. ^aP<0.05 vs. the control group; ^bP<0.05 vs. the model group.

Figure 2. Stemonine decreases the levels of MDA, NO and NOS, and increases the level of SOD, in mice with particulate matter 2.5-induced chronic obstructive pulmonary disease. Levels of (A) MDA, (B) NO, (C) NOS, and (D) SOD in the bronchoalveolar fluid. MDA, malonyldialdehyde; NO, nitric oxide; NOS, NO synthase; SOD, superoxide dismutase; LS, low-dose stemonine; MS, moderate-dose stemonine; HS, high-dose stemonine. [*]P<0.05 vs. the control group; ^{##}P<0.05 vs. the model group.

Stemone alleviates lung inflammation in mice with PM_{2.5}-induced COPD. Previous studies have demonstrated that acute cigarette smoke exposure depletes the antioxidant capacity of the lungs (24,25). Thus, the effects of stemonine on the levels of the cytokines TNF-α and IL-6 in the BALF of the different groups were measured using ELISA kits in the present study (Fig. 3 and Table III). The levels of TNF-α and IL-6 in the groups treated with stemonine (45, 90 and 180 mg/kg) were significantly higher compared with those in the control group (all P<0.05), whereas they were significantly lower compared with the model group (all P<0.05). These results suggest that stemonine alleviates PM_{2.5}-induced lung inflammation in mice.

Stemonine reduces lung inflammation and damage in mice with PM_{2.5}-induced COPD. Histology analysis was performed and evaluated as previously described (23,24). Pathological
changes and the effects of inflammation, including infiltrates, thickened alveolar septae, pus and cell hyperplasia, were investigated in the lung tissues of the different groups using H&E staining (Fig. 4). This revealed marked infiltration of inflammatory cells and exudative changes in the lungs of the model group (Fig. 4B), whereas no inflammation was observed in the control mice (Fig. 4A). However, there was a notable improvement in inflammation in the mice treated with stemonine (Fig. 4C-E) in a dose-dependent manner. These results indicate that stemonine reduces PM$_{2.5}$-induced lung inflammation and damage, suggesting that it may have a therapeutic effect on the pathological effects of PM$_{2.5}$.

Discussion

In recent decades, much research has been focused on the direct and indirect toxic effects of PM$_{2.5}$ in China, the USA and certain European countries. A previous study reported that PM
Evidence mounts that tiny particles can induce immune reactions and oxidative stress in a mouse model of PM$_{2.5}$-induced lung injury. Future research should explore other mechanisms of PM$_{2.5}$ in lung injury, and the interaction and mutual associations between these mechanisms. In addition, the specific regulation of the mechanism by which PM$_{2.5}$ functions remains to be elucidated. Furthermore, studies should aim to identify the essential targets of stemonine, which could lead to the pharmacological development of treatments for respiratory diseases induced by PM$_{2.5}$.

In conclusion, stemonine is able to inhibit the development of PM$_{2.5}$-induced lung inflammation through inhibition of the cytokine response, thus making it a therapeutic candidate for the treatment of respiratory diseases, including COPD. At present, no effective control measures have been developed for the treatment of PM$_{2.5}$-induced respiratory diseases apart from reducing PM$_{2.5}$ emissions, wearing a dust respirator and increasing the number of plants. The results of the present study highlight novel areas for the prevention and treatment of respiratory diseases associated with environmental pollution.

References

