Effect of transient ulnar artery compression on radial artery diameter

MUSTAFA ADEM YILMAZTEPE1 and ERDEM YILMAZ2

Departments of 1Cardiology and 2Radiology, School of Medicine, Trakya University, Edirne 22030, Turkey

Received January 23, 2018; Accepted July 26, 2018

DOI: 10.3892/etm.2018.6632

Abstract. The transradial approach is widely preferred in coronary procedures. A small radial artery diameter (RAD) is the most important factor affecting successful access. Various maneuvers and medications have been used to increase the RAD and thereby facilitate RA cannulation. Ulnar artery compression (UAC) for 30 min has been indicated to be effective in increasing the RAD and facilitating RA access. The aim of the present preliminary study was to assess the effect of transient UAC for 1 min on the RAD. A total of 151 patients were included in the present study. RA ultrasonography was performed at the level of the wrist. The UA was compressed for 1 min. The RAD was measured at baseline, at the end of UAC and at 1 min thereafter. The results indicated that the RAD was significantly smaller in diabetic vs. non-diabetic patients (2.35±0.43 vs. 2.50±0.39 mm, P=0.024) and in women vs. men (2.25±0.38 vs. 2.56±0.38 mm, P<0.001). At the end of UAC, the RAD was increased compared with that at baseline (2.45±0.41 vs. 2.62±0.41 mm, P<0.001), but it started to decrease thereafter, and the RAD measured at 1 min after stopping UAC was significantly smaller (2.62±0.41 vs. 2.55±0.40 mm, P<0.001), while remaining significantly larger than that at baseline (P<0.001). The RA peak systolic flow velocity also increased significantly during UAC (35.3±8.9 vs. 60.3±19.2 cm/sec; P<0.001). In conclusion, Transient UAC for 1 min significantly increased the RAD and the peak systolic flow velocity. Further studies with clinical endpoints are required for further exploration of the feasibility of this approach.

Introduction

The transradial approach (TRA) is widely preferred in coronary procedures and is the recommended choice of access particularly in the invasive treatment of acute coronary syndromes (1). Lower rates of major vascular complications, improved patient comfort and shorter hospital stay are the major advantages of TRA compared to transfemoral access (2); vascular complications, including hemorrhage or pseudoaneurysm are rarely encountered (3). The most important disadvantages are radial artery spasm (RAS) (4) and RA occlusion (RAO) (5).

A small RA diameter (RAD), difficult access, inexperienced operators and the presence of peripheral arterial disease have been identified as predictors of RA access failure (6). In a recently published study, female sex, older age and short stature were reported as enhancing factors of technical failure risk in TR angiography (7). The RA is a small-sized artery whose diameter ranges from 1.15 to 3.95 mm (8). Smaller RADs have been associated with vascular complications (9,10). Multiple puncture attempts increase the risk of vasospasm and may result in hemorrhage, dissection, pseudoaneurysm, thrombosis and pain. Radial sheath insertion may lead to endothelial damage and multiple puncture attempts, and increase the risk of endothelial dysfunction (11). A RAD/sheath diameter (<1 mm) indicated to be a risk factor for RAS (12) and RAO (13). To prevent this damage and safely complete the procedure, vasodilator medications are mainly used. Various maneuvers and medications have been used to increase RAD and enhance RA cannulation (14-16). The strategy of increasing radial artery flow by ulnar artery compression (UAC) has been previously reported (17). In a recently published study, ulnar occlusion for 30 min increased the RAD and facilitated access (18). However, application of UAC for 30 min is not feasible in each patient. The aim of the preliminary study was to assess the effect of 1 min of ipsilateral transient UAC on RAD.

Patients and methods

Patients. A total of 151 consecutive patients who were referred to the Department of Cardiology (Trakya University Hospital, Edirne, Turkey) for coronary angiography between December 2016 and July 2017 were included in the present study. The procedures of the current study were not a part of the routine coronary angiography and USG was performed the day before the coronary angiography procedure. Patients with hemodynamic instability, non-palpable UAs or RAs, those who were on hemodialysis or with a history of RA access were excluded. The present study was approved by the Scientific Research Ethics Committee of Trakya University.

Correspondence to: Dr Mustafa Adem Yılmaztepe, Department of Cardiology, School of Medicine, Trakya University, Balkan Campus, Edirne 22030, Turkey
E-mail: mayilmaztepe@yahoo.com

Key words: transradial access, ultrasonography, ulnar artery, radial artery
Evaluation of the effect of UAC on RAD. RA ultrasonography was performed on the day before the coronary angiography procedure, by an experienced radiologist after 10 min of supine rest (baseline) using a 6-18 MHz linear array transducer (Mylab 70 XVG; Esaote Medical Systems SpA, Genova, Italy). RAD was measured from two-dimensional gray scale transverse images at the wrist level, 2 cm proximal to the styloid process. Following the resting measurements, UAC was applied by manual compression for 1 min at the level of the wrist joint, at Guyon’s canal, with complete obliteration of the UA as confirmed through ultrasonographic assessment. During UAC, the RA was continuously observed. The RA peak systolic flow velocity was also measured at baseline and during UAC. The RAD was measured at the end of the UAC (1st minute) and at 1 min after stopping UAC (2nd minute). All images and patient numbers were digitally recorded and the measurements were performed offline. An experienced sonographer, who was blinded to the study design, measured the diameters and blood flow. The average of two values was accepted as the RAD. To evaluate inter-observer variability, the recorded images of 30 randomly selected patients were analyzed by another sonographer. Intra-observer variability was also evaluated by having 10 randomly selected patients re-measured by the same operator.

The sample size was determined according to the estimated increase in the RAD. In a recently published study by Zhou et al (18), 30 min of UAC caused a 0.11-mm increase in the RAD. A 0.15-mm increase in the RAD was assumed in the present study. For an estimated statistical power of 80%, 114 patients were sufficient for a 0.15-mm increase to reach statistical significance.

Statistical analysis. Statistical analysis was performed using SPSS version 20 for Windows (IBM Corp., Armonk, NY, USA). Categorical variables are expressed as numbers and percentages. A Kolmogorov-Smirnov test was used to assess the distribution of variables. Normally distributed continuous variables are expressed as the mean ± standard deviation and were compared using the independent-samples t-test. Non-normally distributed continuous variables were compared using the Mann-Whitney U test. Categorical values were compared with χ² test. The change in the RAD and the peak systolic velocity at baseline, during and after UAC were calculated using one-way repeated-measures analysis of variance followed by Bonferroni’s post-hoc test for multiple comparisons. Wilcoxon’s signed rank test was used for comparison of the peak RA velocity at baseline with that during UAC. For assessing the correlation of non-normally distributed variables, Spearman’s rank test was used to calculate the correlation coefficient (r) and its significance. Inter- and intra-observer reliability were evaluated using Kappa (κ) statistics. P<0.05 was considered to indicate a statistically significant difference.
was 2.45±0.41 mm. The baseline characteristics of female and male, and diabetic and non-diabetic patients were also compared and are presented in Tables II and III. The RAD was significantly smaller in diabetic vs. non‑diabetic patients (2.35±0.43 vs. 2.50±0.39 mm, P=0.024) and in women vs. men (2.25±0.38 vs. 2.56±0.38 mm, P<0.001). A weak but significant correlation of baseline RAD with the body height and weight was identified (r=0.313, P<0.001; and r=0.328, P<0.001, respectively; data not shown). However, the correlation between the body mass index and the baseline RAD was not significant (r=0.137, P=0.093; data not shown).

Efficacy of 1 min of UAC to increase the RAD. Compared with the baseline, the RAD significantly increased after UAC (2.45±0.41 vs. 2.62±0.41 mm, P<0.001; Fig. 1). The increase in RAD was 0.17±0.09 mm. In comparison with that immediately after 1 min of UAC, the mean RAD at 1 min after stopping UAC was significantly decreased (2.62±0.41 vs. 2.55±0.40 mm, P<0.001); however, it was still larger than the baseline RAD (P<0.001; Fig. 1). The RA peak systolic flow velocity also significantly increased during UAC (35.3±8.9 vs. 60.3±19.2 cm/sec, P<0.001).

Regarding intra-observer reliability, as assessed using κ statistics, an almost perfect agreement was determined (κ=0.819), while assessment of inter-observer reliability indicated a substantial agreement (κ=0.710).

Discussion

The present study demonstrated that transient ipsilateral UAC for 1 min increases the RAD and the RA peak systolic flow velocity. TR access is the recommended choice for coronary procedures, but there are certain limitations, e.g., RAS and RAO. The thicker muscular layer and the predominance of α receptors make the RA naturally prone to spasm. To overcome vasospasm, several techniques and co‑medications have been used (4,19,20). Sedation, smaller-size hydrophilic sheaths and catheters, and vasodilatory cocktails are widely used to prevent spasm.

Hypotension and small-sized, deeply located RAs increase the difficulty of successful puncture, particularly for less experienced operators. Pre-procedural anxiety, pain during local anesthetic injection or puncture attempts may also cause vasospasm. Sedatives given to overcome anxiety may cause hypotension and loss of RA pulse, which complicates successful puncture. As the number of attempts increases, the RA also becomes more susceptible to spasm (21).

A small-diameter RA is the most important factor that affects successful access. Similar to the results of previous
studies, the RAD determined in the present study ranged from 1.3-3.2 mm (mean value, 2.45±0.41 mm) (8). The RAD is significantly smaller in women with diabetes, and may be as small as 1.3 mm, smaller than 5-F sheaths or catheters that are used in the majority of coronary procedures performed via the radial route. It was indicated that a smaller RAD, particularly an RA internal diameter to sheath outer diameter ratio of <1, is a major predictor of RAS (12). Of note, for patients of small stature, diabetics and female patients, RA ultrasonography prior to coronary angiography may be helpful to prevent access site complications.

Various drugs and maneuvers have been used to dilate the RA and facilitate radial RA (14-16). Transient ipsilateral UAC, by directing blood flow to non-UAs, mainly increases radial flow (17). UAC was reported to be effective in reducing RAO after TRA (22-25). In a recent study by Kaplanoglu and Beton (26), the effects of 1 min of UAC on radial artery diameter and consecutive radial artery compression on ulnar artery diameter were assessed. Their results were in line with those of the present study, indicating an increase in the RAD (2.2±0.4 vs. 2.4±0.4 mm, P<0.001) and blood flow with UAC. In addition to this previous study, the present study demonstrated that the RAD at 1 min after the end of UAC was still significantly larger than the baseline value. In another recently published study, UAC for 30 min significantly increased the RAD (2.28±0.44 vs. 2.39±0.50 mm, P=0.042) (18). The authors stated that UAC facilitated radial access with fewer puncture attempts and reduced vascular access time. In contrast to the abovementioned study, UAC was applied in the present study for 1 min only, and this shorter time was also sufficient to increase the RAD. Based on the study by Zhou et al (18), it may be assumed that the enlargement in the RAD achieved in the present study may also facilitate RA access and decrease RAS; however, this requires further investigation.

Of note, the present study had certain limitations. First, it was a single-center study. It was demonstrated that UAC for 1 min was effective in dilating the RA, but further studies with clinical endpoints are required to assess the real-life consequences of UAC. Finally, although RAD was still larger than the baseline measurement at 1 min after UAC, data regarding the duration of RA enlargement are currently lacking.

In conclusion, the application of UAC for 1 min increases the RAD, which may be performed as a strategy to facilitate the TRA in coronary procedures. Further prospective, randomized studies with clinical endpoints are required to assess the feasibility of this method.

Acknowledgements

Not applicable.

Funding

No funding was received.

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors' contributions

MAY and EY performed the enrolment of the patients, data collection and ultrasound imaging. All authors read and approved the final manuscript.

Ethical approval and consent to participate

The present study was approved by the Scientific Research Ethics Committee of Trakya University. All patients provided written informed consent.

Patient consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References


