MicroRNA-877 inhibits cell proliferation and invasion in non-small cell lung cancer by directly targeting IGF-1R

GUOHUA ZHOU, JINGLIAN XIE, ZIKUN GAO and WEISHEN YAO

Department of Thoracic Surgery, Affiliated Nanhai Hospital, Southern Medical University (People's Hospital of Nanhai District), Foshan, Guangdong 528000, P.R. China

Received September 11, 2018; Accepted May 9, 2019

DOI: 10.3892/etm.2019.7676

Abstract. MicroRNAs (miRNAs/miRs) are frequently differentially expressed in non-small cell lung cancer (NSCLC), and differential miRNAs expression may be closely associated with NSCLC genesis and development. Therefore, an in-depth investigation of the cancer-associated miRNAs that are crucial for NSCLC pathogenesis may provide effective therapeutic targets for patients with this aggressive malignant tumor type. The expression levels and roles of miR-877 have been well studied in hepatocellular carcinoma and renal cell carcinoma. However, the expression pattern and functions of miR-877 in NSCLC as well as associated underlying mechanisms, to the best of our knowledge, have not yet been investigated. The present study revealed that miR-877 expression was downregulated in NSCLC tissues and cell lines. Low miR-877 expression was significantly associated with TNM stage and distant metastasis in patients with NSCLC. Functional experiments demonstrated that recovery of miR-877 expression restricted the proliferation and invasion of NSCLC cells. In addition, bioinformatics analysis predicted insulin-like growth factor 1 receptor (IGF-1R) as a potential target of miR-877. Luciferase reporter assays, reverse transcription-quantitative PCR and western blot analysis further validated that IGF-1R was a direct target of miR-877 in NSCLC. Furthermore, IGF-1R expression was markedly upregulated in NSCLC tissues, and exhibited an inverse correlation with miR-877 expression. Additionally, IGF-1R overexpression reversed the inhibitory effects in NSCLC cells caused by miR-877 upregulation. These findings demonstrated that miR-877 attenuated NSCLC cell proliferation and invasion, at least partly, by downregulating IGF-1R expression, thereby providing an new candidate biomarker for the diagnosis and therapy of patients with NSCLC.

Introduction

Lung cancer, a particularly aggressive disease, is the leading cause of cancer-associated mortality in men and women globally (1). It has been estimated that there will be ~1.825 million newly diagnosed cases and 1.59 million cases of lung cancer-associated mortality every year worldwide (2). Lung cancer can be divided into two major subtypes: Non-small cell lung cancer (NSCLC) and small cell lung cancer (3). NSCLC is an aggressive type of lung cancer and accounts for ~85% of all lung cancer cases (4). Despite tremendous progress in surgery and other therapeutic techniques, the 5-year survival rate of patients with NSCLC ranges from 73% in stage IA disease to 13% in stage IV disease (values were calculated in 2007) (5).

Rapid tumour growth, recurrence and metastasis are considered the primary factors responsible for the poor therapeutic outcomes of patients with NSCLC (6). Therefore, the identification of mechanisms that drive NSCLC pathogenesis may have a significant bearing on the development of novel and effective therapeutic approaches for patients with this aggressive malignant tumor.

Previous studies have demonstrated that microRNAs (miRNAs/miRs) may serve crucial roles in human tumorigenesis and tumor development (7-9). miRNAs are a large family of non-coding short RNAs, which are typically 18-24 nucleotides long (10). miRNAs are able to negatively modulate gene expression via direct interactions with the 3'-untranslated regions (3'-UTRs) of their target genes in an imperfect or perfect base pairing manner, and therefore, inducing translational suppression and/or mRNA degradation (11). Consequently, miRNAs are implicated in the regulation of a series of biological behaviors, including cell proliferation, differentiation, metabolism and carcinogenesis (12). Emerging data have revealed that miRNAs are abnormally expressed in almost every type of human cancer, including NSCLC (13), cervical cancer (14), colorectal cancer (15), prostate cancer (16) and breast cancer (17). miRNAs are closely associated with NSCLC occurrence and development through regulation of multiple malignant behaviors, as either oncogenes or tumor suppressors (18,19). Hence, further exploration of the biological roles of miRNAs may help to improve the understanding of the mechanisms underlying NSCLC genesis and development, and may facilitate the identification of new therapeutic targets.
The expression levels and roles of miR-877 have been well studied in hepatocellular carcinoma (20,21) and renal cell carcinoma (22). However, the expression pattern and functions of miR-877 in NSCLC as well as the associated underlying mechanisms, to the best of our knowledge, have not yet been investigated. Therefore, the present study attempted to detect miR-877 expression in NSCLC and examine its clinical significance. The specific roles and underlying mechanism of miR-877 in the malignant progression of NSCLC were explored. The results of the present study may provide an improved understanding of the causal mechanisms of NSCLC progression.

Materials and methods

Patients and tissue specimens. The experimental protocols were approved by the Ethics Committee of the Affiliated Nanhai Hospital. All patients provided written informed consent prior to their enrollment in the present study. NSCLC and adjacent non-tumor tissues (2 cm away from tumor tissues) were collected from 53 patients (28 males, 25 females; age range, 46-72 years) who received surgical resection at Affiliated Nanhai Hospital (Foshan, China) between September 2015 and June 2017. All patients had not been treated with preoperative chemotherapy and/or radiotherapy. TNM staging system was used for identifying the stage of NSCLC (23). Tissue specimens were frozen in liquid nitrogen and then stored at -80°C for further use.

Cell culture. A non-tumorigenic bronchial epithelium cell line (BEAS-2B) and four human NSCLC cell lines (H522, H460, A549 and SK-MES-1) were purchased from Shanghai Institute of Biochemistry and Cell Biology. These cell lines were grown in DMEM, supplemented with 10% FBS, 100 U/ml penicillin G and 100 µg/ml streptomycin (all from Gibco; Thermo Fisher Scientific, Inc.), at 37˚C in a humidified atmosphere with 5% CO₂.

Transient transfection. miR-877 mimics and miRNA mimics negative control (miR-NC) were purchased from Shanghai GenePharma Co. Ltd. The miR-877 mimics sequence was 5′-GUAGAGGAGAUUGCCAGGGG-3′ and the miR-NC sequence was 5′-UUCUCGAAGUGCUGACGTT-3′. Insulin-like growth factor 1 receptor (IGF-1R) overexpression plasmid pcDNA3.1-IGF-1R (pc-IGF-1R), used for IGF-1R overexpression, was chemically synthesized by Guangzhou RiboBio Co., Ltd. Cells in the logarithmic phase were collected and seeded into six-well plates at a density of 5x10⁴ cells/well. Cells were transfected with oligonucleotides (100 pmol) or plasmid (4 µg) using Lipofectamine 2000 (Invitrogen; Thermo Fisher Scientific, Inc.), according to the manufacturer’s protocol. Cotransfection of miR-877 mimics (100 pmol) and pc-IGF-1R or pcDNA3.1 (4 µg) was also performed using Lipofectamine® 2000. The culture medium was replaced with fresh DMEM containing 10% FBS following a 6-8 h incubation period. After transfection 48 h, reverse transcription-quantitative polymerase chain reaction (RT-qPCR) and Transwell invasion assays were performed. Cell Counting kit-8 (CCK-8) assay and western lot analysis was conducted at 24 and 72 h posttransfection, respectively.

RT-qPCR. For total RNA isolation, tissue samples or cultured cells (1.0x10⁶) were lysed with TRIzol® reagent (Invitrogen; Thermo Fisher Scientific, Inc.). To detect miR-877 expression, complementary DNA (cDNA) was produced using a TaqMan® MicroRNA Reverse Transcription kit (Applied Biosystems; Thermo Fisher Scientific, Inc.). The temperature protocol for reverse transcription was as follows: 16°C for 30 min, 42°C for 30 min and 85°C for 5 min. Subsequently, qPCR was performed to determine miR-877 expression using a TaqMan MicroRNA Assay kit (Applied Biosystems; Thermo Fisher Scientific, Inc.). The temperature protocol for qPCR were as follows: 50°C for 2 min, 95°C for 10 min; 40 cycles of denaturation at 95°C for 15 sec; and annealing/extension at 60°C for 60 sec. In order to analyze IGF-1R mRNA expression, reverse transcription was performed using a PrimeScript™ RT Reagent kit (Takara Biotechnology Co., Ltd.). The temperature protocol for reverse transcription was as follows: 37°C for 15 min and 85°C for 5 sec. The synthesized cDNA was then used for amplification with a SYBR Premix Ex Taq mastermix (Takara Biotechnology Co., Ltd.). The temperature protocols for qPCR were as follows: 5 min at 95°C, followed by 40 cycles of 95°C for 30 sec and 65°C for 45 sec. GAPDH and U6 snRNA were applied as endogenous controls for miR-877 and IGF-1R mRNA expression, respectively. The following primer sequences were used: miR-877, forward 5'-GTAGAGGAGATGCGGGCGG-3' and reverse 5'-CAG TGCGTTGCTGGAGA-3'; U6, forward 5'-GCTTCCGCGA GACATATACTAAG-3' and reverse 5'-CGTTCCAGGGA TTGGCTGATCAT-3'; IGF-1R, forward 5'-GAGGTCGGCT CGGGAAGAGAT-3' and reverse 5'-TTCCACACACCTTG GCAAC-3' and GAPDH, forward 5'-ACAATTTTGATCG TGAAAGG-3' and reverse 5'-GCCATCACGCCACAGTTT C-3'. The 2^-ΔΔCq method was utilized to calculate relative gene expression (24).

CCK-8 assay. Cells were harvested at 24 h post-transfection, suspended in DMEM containing 10% FBS and inoculated in 96-well plates at a density of 3x10⁴ cells/well. Cells continued to be incubated at 37°C with 5% CO₂ for 0, 24, 48 and 72 h. The CCK-8 assay was performed at indicated time points by adding 10 µl CCK-8 solution (Dojindo Molecular Technologies, Inc.) into every well. The plates were further incubated at 37°C supplied with 5% CO₂ for 2 h. Finally, the optical density value of each well was detected at a wavelength of 450 nm using a microplate reader (Molecular Devices, LLC).

Transwell invasion assay. The invasive capacity of cells was evaluated using Transwell inserts containing a Matrigel-coated membrane (8-µm pore size; BD Biosciences). Following a 48 h incubation at 37°C, transected cells were resuspended in FBS-free DMEM. A total of 1x10⁵ cells in 200 µl FBS-free DMEM were plated into the upper chamber. A total of 500 µl DMEM supplemented with 20% FBS, which served as a chemoattractant, was added to the lower chamber. The cells were allowed to invade for 24 h in a 37°C humidified incubator containing 5% CO₂. Subsequently, the non-invasive cells were carefully removed from the upper surface of the insert with a cotton swab. The invasive cells were fixed with 100% ethanol at room temperature for 30 min and stained with 0.05% crystal violet at room temperature for 30 min, and the numbers of
invasive cells in five visual fields/insert were counted under an inverted light microscope (IX71; Olympus Corporation).

Bioinformatics analysis. The putative targets of miR-877 were predicted using publicly available algorithms, including TargetScan (Release 7.2; www.targetscan.org) and miRDB (Last modified: January 22, 2019; www.mirdb.org).

Luciferase reporter assay. The luciferase reporter plasmids, termed psiCHECK-IGF-1R-3’-UTR-wild-type (wt) and psiCHECK-IGF-1R-3’-UTR-mutant (mut), containing a wt and mut miR-877 binding site in the 3’-UTR of IGF-1R, were constructed by Shanghai GenePharma Co., Ltd. Cells were inoculated into 24-well plates at a density of 1x10^5 cells/well. After overnight incubation, a mixture of miR-877 mimics or miR-NC and psiCHECK-IGF-1R-3’-UTR-wt or psiCHECK-IGF-1R-3’-UTR-mut was co-transfected into cells using Lipofectamine® 2000. At 48 h after treatment, transfected cells were collected and luciferase activity was measured using a Dual-Luciferase Reporter Assay system (Promega Corporation). Renilla luciferase activity was used as a reference for normalization.

Western blot analysis. Homogenized tissues and cells (1.0x10^6) were washed with PBS (Gibco; Thermo Fisher Scientific, Inc.) and lysed using RIPA buffer (Beyotime Institute of Biotechnology). A Bicinchoninic Acid Protein Assay kit (Beyotime Institute of Biotechnology) was utilized to evaluate the concentration of the total protein. Equal amounts of protein (30 μg per lane) were separated by SDS-PAGE (10% gel) and transferred onto PVDF membranes (EMD Millipore), followed by blocking in TBS with 0.05% Tween-20 (TBST) containing 5% skimmed milk powder for 2 h at room temperature. The membranes were then incubated with rabbit anti-human IGF-1R antibody (cat. no. ab182408; 1:1,000 dilution) or rabbit anti-human GAPDH antibody (cat. no. ab181603; 1:1,000 dilution; both from Abcam) at 4°C overnight. Following three washes with TBST, the membranes were further incubated with the corresponding horseradish peroxidase-conjugated secondary antibody (cat. no. ab6721; 1:5,000 dilution; Abcam) for 1 h at room temperature. The BM Chemiluminescence Western blotting kit (Sigma-Aldrich; Merck KGaA) was used for signal detection. GAPDH served as an endogenous control to normalize the expression level of IGF-1R. Quantity One software version 4.62 (Bio-Rad Laboratories, Inc., Hercules, CA, USA) was used for densitometry.

Statistical analysis. Data are presented as the mean ± standard error from at least three independent experiments. All statistical analysis was conducted using SPSS version 17.0 software (SPSS, Inc.). The χ² test was adopted to determine the association between miR-877 and clinicopathological characteristics of patients with NSCLC. The association between the expression levels of miR-877 and IGF-1R mRNA was analyzed by Spearman's correlation analysis. A Student's t-test was used to compare differences between two groups and one-way ANOVA followed by a Student-Newman-Keuls post hoc test was used to compare the differences among three or more groups. A paired t-test was used for the analysis of paired samples while an unpaired t-test was used for the analysis of distinct samples. P<0.05 was considered to indicate a statistically significant difference.

Results

miR-877 expression is decreased in NSCLC tissues and cell lines. RT-qPCR analysis was performed to determine miR-877 expression in 53 pairs of NSCLC tissues and adjacent non-tumor tissues. The results revealed that the expression levels of miR-877 were noticeably downregulated in NSCLC tissues compared with those in adjacent non-tumor tissues (P<0.05; Fig. 1A).

Subsequently, a χ² test was utilized to determine the association between miR-877 expression and the clinicopathological characteristics of patients with NSCLC. All patients were divided into low or high miR-877 expression groups, with the median value as a cutoff. The statistical analysis indicated that the expression levels of miR-877 were significantly

Figure 1. Relative miR-877 expression in NSCLC tissues and cell lines. (A) RT-qPCR analysis was utilized for the detection of miR-877 expression in 53 pairs of NSCLC tissues and adjacent non-tumor tissues. (B) Relative miR-877 expression was analysed by RT-qPCR in four NSCLC cell lines (H522, H460, A549 and SK-MES-1) and a non-tumorigenic bronchial epithelium cell line (BEAS-2B). *P<0.05 vs. non-tumor tissues/BEAS-2B. miR-877, microRNA-877; NSCLC, non-small cell lung cancer; RT-qPCR, reverse transcription-quantitative PCR.
associated with the TNM stage (P=0.009) and distant metastasis (P=0.020). However, no obvious association was identified between miR-877 and sex, age, tumour size, smoking history or tumor differentiation (all P>0.05; Table I). Furthermore, the expression levels of miR-877 were detected in a panel of NSCLC cell lines (H522, H460, A549 and SK-MES-1) and a non-tumorigenic bronchial epithelium cell line, BEAS-2B. The results of the RT-qPCR analysis demonstrated that miR-877 expression was lower in all four NSCLC cell lines compared with that in BEAS-2B cells (P<0.05; Fig. 1B). These results implied that alteration of miR-877 expression may be involved in NSCLC carcinogenesis and progression.

Overexpression of miR-877 restricts the proliferation and invasion of NSCLC cells. To reveal the functions of miR-877 in NSCLC, H460 and A549 cells were selected for functional experiments due to their low expression levels of miR-877. These cells were treated with miR-877 mimics or miR-NC. The overexpression of miR-877 was confirmed by RT-qPCR in H460 and A549 cells following transfection with miR-877 mimics (P<0.05; Fig. 2A). A CCK-8 assay was used to investigate the proliferative ability of NSCLC cells. The proliferation of H460 and A549 cells was markedly inhibited by miR-877 overexpression, compared with the miR-NC group (P<0.05; Fig. 2B). Additionally, a Transwell invasion assay was performed to further evaluate the effect of miR-877 upregulation in NSCLC cell invasion. The Transwell invasion assay consistently demonstrated that ectopic miR-877 expression significantly decreased the invasion capacity of H460 and A549 cells compared with that of cells transfected with miR-NC (P<0.05; Fig. 2C). These results demonstrated that miR-877 may have an inhibitory role in the development of NSCLC.

IGF-1R is a direct target gene of miR-877 in NSCLC cells. To clarify the mechanisms underlying the roles of miR-877 in NSCLC progression, bioinformatics analysis was used to identify potential targets of miR-877. The analysis indicated that IGF-1R may be a candidate target of miR-877 (Fig. 3A). IGF-1R, a well-known oncogene, has previously been reported to be closely associated with NSCLC formation and progression. Furthermore, the upregulation of IGF-1R in NSCLC tissues was, at least in part, caused by miR-877 downregulation.

IGF-1R overexpression plasmid pc-IGF-1R and empty pcDNA3.1 plasmid were chemically synthesized, and then co-transfected into H460 and A549 cells with miR-877 mimics or miR-NC, to further determine whether IGF-1R is involved in the miR-877-mediated suppression of NSCLC cell proliferation and invasion. IGF-1R overexpression plasmid pc-IGF-1R and empty pcDNA3.1 plasmid were chemically synthesized, and then co-transfected into H460 and A549 cells with miR-877 mimics or miR-NC.

IGF-1R expression was upregulated in NSCLC tissues and inversely correlated with miR-877 expression. IGF-1R expression was detected in NSCLC tissues and its association with miR-877 was explored. RT-qPCR analysis revealed that the mRNA expression level of IGF-1R was noticeably higher in NSCLC tissues compared with adjacent non-tumor tissues (P<0.05; Fig. 4A). Compared with adjacent non-tumor tissues, IGF-1R protein expression was highly expressed in NSCLC tissues (P<0.05; Fig. 4B and C). Spearman's correlation analysis confirmed an inverse correlation between miR-877 expression and IGF-1R mRNA expression in NSCLC tissues (r=-0.5922, P<0.0001; Fig. 4D). These results suggested that the upregulation of IGF-1R in NSCLC tissues was, at least in part, caused by miR-877 downregulation.

IGF-1R reintroduction reverses the suppressive effects of miR-877 on NSCLC. Rescue experiments were performed to further determine whether IGF-1R is involved in the miR-877-mediated suppression of NSCLC cell proliferation and invasion. IGF-1R overexpression plasmid pc-IGF-1R and empty pcDNA3.1 plasmid were chemically synthesized, and then co-transfected into H460 and A549 cells with miR-877 mimics or miR-NC.
Figure 2. Regulatory effects of miR-877 upregulation on the proliferation and invasiveness of H460 and A549 cells. (A) miR-877 mimics or miR-NC were transfected into H460 and A549 cells, and upregulation of miR-877 was confirmed by reverse transcription-quantitative PCR. (B) Effect of miR-877 overexpression on the proliferative ability of H460 and A549 cells evaluated using a CCK-8 assay. (C) Transwell invasion assays were used to determine the invasion of H460 and A549 cells following transfection of miR-877 mimics or miR-NC (magnification, x200). *P<0.05 vs. miR-NC. CCK-8, Cell Counting kit-8; miR-877, microRNA-877; miR-NC, microRNA mimics negative control; OD, optical density.

Figure 3. Identification of IGF-1R as a direct target of miR-877 in non-small cell lung cancer cells. (A) Sequence alignment of miR-877 and the 3'-UTR of IGF-1R. The wt and mut miR-877 binding sites in the 3'-UTR of IGF-1R are presented. (B) Luciferase reporter assay in H460 and A549 cells which were co-transfected with miR-877 mimics or miR-NC and psiCHECK-IGF-1R-3'-UTR-wt or psiCHECK-IGF-1R-3'-UTR-mut. (C) Reverse transcription-quantitative PCR and (D) western blot analyses were conducted to detect the IGF-1R mRNA and protein expression in H460 and A549 cells transfected with miR-877 mimics or miR-NC. *P<0.05 vs. miR-NC. 3'-UTR, 3'-untranslated region; IGF-1R, insulin-like growth factor 1 receptor; miR-877, microRNA-877; miR-NC, microRNA mimics negative control; mut, mutant; wt, wild-type.
ZHOU et al: miR-877 IN NSCLC

mimics. The present study revealed that transfection with pc-IGF-1R notably increased the protein expression levels of IGF-1R in H460 and A549 cells (P<0.01; Fig. 5A). In addition, the decreased IGF-1R expression caused by miR-877 upregulation was restored in H460 and A549 cells following pc-IGF-1R co-transfection (P<0.05; Fig. 5A). Furthermore, CCK-8 and Transwell invasion assays revealed significantly reduced proliferation (P<0.05; Fig. 5B) and invasion (P<0.05; Fig. 5C) following miR-877 upregulation, while IGF-1R overexpression exhibited the opposite effect. Furthermore, the suppressive effects of miR-877 were reversed in H460 and A549 cells by co-transfection with pc-IGF-1R. These results suggested that miR-877 may exert its tumor suppressor activity in NSCLC cells, at least partly, by inhibiting IGF-1R expression.

Discussion

An increasing number of studies has documented that miRNAs are frequently aberrantly expressed in NSCLC (38-40). Differential miRNA expression may be implicated in NSCLC genesis and development by affecting numerous aspects of cancer biology (41). Therefore, further investigation of the cancer-associated miRNAs that are crucial for the pathogenesis of NSCLC may provide effective therapeutic targets for patients with this aggressive malignant tumor. Recently, the functions of miRNAs in the progression and development of NSCLC have been gradually recognized (42-44). The present study demonstrated that miR-877 may exhibit tumor suppressor action in NSCLC by directly targeting IGF-1R. The key findings of the present study were as follows: i) miR-877 expression was significantly downregulated in NSCLC tissues and cell lines; ii) low miR-877 expression was markedly associated with TNM stage and distant metastasis; iii) increased miR-877 expression suppressed the proliferation and invasiveness of NSCLC cells; and iv) IGF-1R was revealed to be a direct target of miR-877 in NSCLC cells. Overall, these results suggested that miR-877 may be a potential diagnostic and therapeutic target for patients with NSCLC.

miR-877 has been observed to exhibit low expression levels in hepatocellular carcinoma (20,21) and renal cell carcinoma (22). In hepatocellular carcinoma, downregulation of miR-877 is strongly associated with the histological grade and TNM stage. Patients with hepatocellular carcinoma with low miR-877 expression exhibit shorter overall survival and disease-free survival than those with high miR-877 expression (20). Notably, miR-877 has been identified as an independent poor prognostic biomarker for patients with hepatocellular carcinoma (20). Functionally, miR-877 directly targets cyclin-dependent kinase 14 (20) and forkhead box protein M1 (21) to serve as a tumor suppressor in hepatocellular carcinoma by regulating cell proliferation, colony formation, metastasis and chemosensitivity to paclitaxel. miR-877 overexpression is able to inhibit the proliferation and migration of renal cell carcinoma via blockade of eukaryotic elongation factor-2 kinase (22). These findings suggest that miR-877 may represent an effective target for the diagnosis and treatment of patients with these specific human malignancy types.

miRNAs participate in the modulation of almost all key cellular processes by directly regulating the expression of their target genes. Therefore, the mechanisms responsible

Figure 4. Upregulation of IGF-1R is inversely correlated with miR-877 expression in NSCLC tissues. (A) mRNA expression levels of IGF-1R were measured in 53 pairs of NSCLC and adjacent non-tumor tissues. (B) Western blot analysis of IGF-1R protein expression in NSCLC and adjacent non-tumor tissues. (C) Quantitative analysis of western blotting results. (D) Correlation between miR-877 and IGF-1R mRNA expression in NSCLC tissues was assessed using Spearman's correlation analysis. *P<0.05 vs. nontumor tissues. IGF-1R, insulin-like growth factor 1 receptor; N, nontumor tissues; NSCLC, non-small cell lung cancer; T, NSCLC tissues.
for the inhibitory roles of miR-877 in NSCLC progression were explored in the present study. Bioinformatics analysis was used to identify putative targets of miR-877, and a complementary site was observed between miR-877 and the 3'-UTR of IGF-1R. Subsequently, a luciferase reporter assay, RT-qPCR and western blot analysis revealed that miR-877 could directly target the 3'-UTR of IGF-1R, and that miR-877 could negatively regulate IGF-1R expression in NSCLC cells. Furthermore, IGF-1R was overexpressed in NSCLC tissues, and its expression was negatively correlated with miR-877 expression. Lastly, the tumor-suppressing roles of miR-877 overexpression in malignant phenotypes of NSCLC cells were reversed by restoration of IGF-1R expression. These results provided evidence that IGF-1R was a direct target gene of miR-877 in NSCLC cells.

IGF-1R is a transmembrane tyrosine kinase receptor of the insulin receptor family and contains two extracellular α subunits and two transmembrane β subunits (45). Numerous studies have reported that IGF-1R is frequently overexpressed in a variety of human cancer types, including gastric cancer (46), breast cancer (47), glioblastoma (48), renal cell carcinoma (49) and osteosarcoma (50). In NSCLC, IGF-1R expression has been revealed to be upregulated, and significantly associated with tumor size, tumor grade and response to chemotherapy (25-30). Univariate and multivariate analyses validated that patients with NSCLC with high IGF-1R expression exhibit a poor disease-free survival and overall survival compared with patients with low IGF-1R expression (27,30-32). IGF-1R deregulation serves a major role in the aggressive behaviors of NSCLC by affecting cell proliferation, cell cycle status, apoptosis, metastasis, epithelial-mesenchymal transition, angiogenesis and radiochemotherapy resistance (33-37). Accordingly, IGF-1R knockdown using miR-877-based targeted therapy could be a valuable therapeutic approach in patients with NSCLC.

However, in the present study, statistical analysis did not identify an association between miR-877 and tumor size in NSCLC, while according to *in vitro* experiments, miR-877 overexpression inhibited NLCCLC cell proliferation. This may be attributed to the small sample size of the present study. More tissue samples will be collected in the near future and the association between miR-877 and tumor size in patients with...
NSCLC will be analyzed. In addition, miR-877 inhibitor was not used to knockdown endogenous miR-877 expression and to examine its effects in NSCLC cells. This was a limitation of the present study. In further investigations, miR-877 inhibitor will be used to silence miR-877 expression in NSCLC cells. Functional experiments will be performed to determine the regulatory effects of miR-877 silencing in NSCLC cell proliferation and invasion.

In summary, miR-877 expression was downregulated in NSCLC, and significantly associated with TNM stage and distant metastasis. miR-877 exhibited antitumor properties and inhibited the malignant biological behaviors of NSCLC cells, at least in part, by inhibiting IGF-1R expression. These findings provided novel insights into the mechanisms underlying NSCLC genesis and development, which may facilitate the identification of miR-877 as a therapeutic target for treating patients with this fatal disease.

Acknowledgements
Not applicable.

Funding
No funding was received.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Authors' contributions
WY designed the study. GZ performed the reverse transcription-quantitative PCR and Cell Counting kit-8 assays. JX and ZG performed the Transwell invasion assays, western blot analysis and luciferase reporter assay. All authors have read and approved the final draft.

Ethics approval and consent to participate
The present study was approved by the Affiliated Nanhai Hospital and was performed in accordance with the Declaration of Helsinki and the guidelines of the Ethics Committee of Affiliated Nanhai Hospital. Written informed consent was obtained from all patients for the use of their clinical tissues.

Patient consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

References


