Abstract. Geranylgeranylacetone (GGA) has recently been reported to have a protective effect against ischemic, injurious and apoptotic stress in several tissues. The aim of this study was to determine the effect of GGA on colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in mice. Colitis was induced by intrarectal instillation of TNBS in 50% ethanol in BALB/c mice. Survival, change in body weight and change in wet colon weight were assessed. Histological score in the colon was evaluated 5 days after TNBS treatment. The level of myeloperoxidase (MPO) activity in the colon was also determined. Immunohistochemistry for CD4 in the colon was performed. In addition, the level of heat shock protein (HSP) 70 in the colon was determined by Western blot analysis. Mice were orally treated with GGA (300 mg/kg) 2 h before and every other day after starting TNBS administration. Treatment with GGA markedly improved the survival rate, and reduced the loss of body weight and loss of wet colon weight in mice with TNBS-induced colitis. GGA also suppressed the increase in MPO activity and the number of CD4-positive cells infiltrating the colons of mice with TNBS-induced colitis. Furthermore, treatment with GGA remarkably up-regulated the expression of HSP70 in the colons of mice with TNBS-induced colitis. Our results provide further evidence that GGA has therapeutic potential for intestinal inflammation.

Introduction

Ulcerative colitis and Crohn’s disease are the major inflammatory bowel diseases (IBDs) in humans and are characterized by chronic relapsing intestinal inflammation. Although numerous studies on IBD have been carried out, the etiology of IBD still remains unknown (1). Recent studies have demonstrated that various inflammatory mediators, including tumor necrosis factor (TNF)-α and macrophage migration inhibitory factor (MIF) are involved in the pathogenesis and exacerbation of IBD (2-4).

5-Aminosalicylic acid (ASA), glucocorticoids, and immunosuppressive and immunoregulatory agents are commonly used for the treatment of IBD (1). Unfortunately, some IBD patients are unresponsive to treatment with these agents. Recently, infliximab, an anti-TNF-α monoclonal antibody, has been used for the treatment of Crohn’s disease (5,6). However, side effects, such as infection and malignancy, have been reported in some IBD patients (7,8).

Geranylgeranylacetone (GGA) is an acyclic polyisoprenoid that can protect the stomach from mucosal injury such as ulceration. This compound is effective for protecting the gastric mucosa from various stresses (9,10). In addition, GGA increases synthesis and secretion of gastric mucin (11) as well as components of high-molecular-weight glycoproteins and surface-active phospholipids (12). Interestingly, it has been reported that GGA enhances the expression of heat shock protein (HSP) in gastric mucosal cells and in several tissues and that it protects cells and tissues from destruction and inflammation (13-16). HSP is considered to be a stress-inducible protein that exhibits protective properties and regulates the immune response (17). HSP plays a pivotal role in operating as an intracellular chaperone for aberrantly folded or mutated proteins, and it provides a protective function to cells under stressful conditions (17). HSP70, named after its molecular weight of approximately 70 kDa, has a strong cytoprotective function against stress in the stomach, liver and heart (18-20). Transgenic overexpression of HSP70 also protects the mouse heart against tissue injury (21,22). In the human bowel, the expression of HSP70 is enhanced in ulcerative colitis compared to non-specific colitis in the colonic mucosa (23). Another study has shown that HSP70 induced
by heat stress contributes to the suppression of acetic acid-induced colitis in rats (24). However, the role of HSP70 in colitis has not been fully elucidated. Therefore, the aim of this study was to investigate the effect of GGA on experimental colitis induced by 2,4,6-trinitrobenzene sulfonic acid (TNBS) in mice and to determine whether GGA enhances the expression of HSP70 in mice with TNBS-induced colitis as well as in other experimental models.

Materials and methods

Animals and study protocol. Specific pathogen-free 8-week-old BALB/c male mice weighing 22-25 g were obtained from Japan Charles River Co. (Shizuoka, Japan). Mice were comfortably housed under standard conditions of temperature, humidity and light/dark cycle. Mice could access food and water ad libitum. All experimental protocols adhered to the Declaration of Helsinki and were approved by the Animal Experiment Ethics Committee of the Graduate School of Medicine of Hokkaido University.

Mice were starved for 12 h and colitis was induced in mice by intrarectal administration of 0.5 mg of TNBS (Sigma, St. Louis, MO) in 0.1 ml of 50% ethanol using a nylon catheter as previously described (25). The mice were weighed and visually inspected every day beginning on day 0. The percent weight change for each individual mouse compared to the weight on day 0 was calculated. On the 5th day after TNBS administration, the mice were euthanised by intraperitoneal injection of thiopental and the colon tissue was removed. The wet colon weight was immediately measured. For assessment of histology, colon tissue was longitudinally opened, fixed with 10% neutral buffered formalin, and embedded in paraffin. For analyses of myeloperoxidase (MPO) activity and HSP70, colon tissues were stored at -80˚C until use. For determination of the survival rate, each mouse was intrarectally administered 1 mg of TNBS in 0.1 ml of 50% ethanol.

Histological evaluation. After deparaffinization of thin tissue sections on glass slides, the colon tissue was stained with hematoxylin and eosin (H&E). Histological evaluation was represented as units per gram of tissue.

Measurement of myeloperoxidase activity. The level of myeloperoxidase (MPO) activity was determined in the colon as described previously (27,28). Briefly, a tissue specimen (~300 mg) was homogenized in 50 mM potassium phosphate buffer (pH 6.0) with 0.5% hexadecyltrimethylammonium bromide using a Polytron-type homogenizer for 3x30 sec on ice. The sample was centrifuged at 20,000 x g for 20 min at 4˚C, and the supernatant was collected. Each sample (100 μl) was added to 2.9 ml of 50 mM phosphate buffer (pH 6.0) containing 0.167 mg/ml O-dianisidine hydrochloride and 0.0005% hydrogen peroxide, and the MPO activity in the sample was measured using a spectrometer at 25˚C. The protein concentration of the supernatant was determined using a Bradford assay kit (Bio-Rad Laboratories, Hercules, CA) for calibration, and values were standardized using MPO purified from human leukocytes (Sigma). Absorbance at 460 nm was determined for three separate 30-sec intervals. One unit of MPO activity was defined as 1 μmol H₂O₂ broken down to H₂O and O₂ by MPO. The final value of MPO activity was represented as units per gram of tissue.

Immunohistochemistry. Immunohistochemical analysis for CD4 was performed with a Vectastain ABC kit according to the manufacturer's protocol. A frozen sample of colon tissue was cut to a 5-μm-thick section. The section was pretreated by overnight incubation with an anti-CD4 antibody (diluted 1:50, BD Bioscience, San Jose, CA, USA) at 4˚C. CD4+ leukocytes were counted microscopically in a blind fashion.

Western blot analysis for HSP in colon tissue. Colon tissue was disrupted using a Polytron homogenizer (Kinematica, Lucerne, Switzerland). The homogenate was dissolved in 20 μl of Tris-HCl, 50 mM (pH 6.8), containing 2-mercaptoethanol (1%), SDS (2%), glycerol (20%) and bromophenol blue (0.04%), and heated at 100˚C for 5 min. The sample was then subjected to SDS-polyacrylamide gel electrophoresis (SDS-
Effects of GGA on survival, body weight and wet colon weight in mice with TNBS-induced colitis. In this model, a high dose of TNBS leads to death within 5 days. In mice treated with ethanol alone, the survival rate slightly decreased to 96.7±3.3% in comparison with non-treated controls (Fig. 1). The survival rate was remarkably decreased to 23.3±8.8% in mice given 1 mg of TNBS. On the other hand, the survival rate was greatly improved in mice treated with 300 mg/kg of GGA (56.7±3.3%, P<0.01, vs. vehicle-treated mice). The percent change in body weight was markedly decreased to 77.9±1.7% in vehicle-treated mice 5 days after initial TNBS administration in comparison with that on day 0 (100%) (Fig. 2). In contrast, the percent loss in body weight was significantly smaller in mice treated with 300 mg/kg of GGA than in vehicle-treated mice (94.4±1.3%; P<0.01 vs. vehicle-treated mice) (Fig. 2).

Wet colon weight correlates with the severity of TNBS colitis and is used as a parameter of colitis (23). Vehicle-treated mice given TNBS showed an increase in wet colon weight compared with non- or ethanol alone-treated mice (0.63±0.04, 0.42±0.07 and 0.44±0.02 g, respectively, P<0.01 vs. non- or ethanol-treated mice) (Fig. 3). On the other hand, treatment with 300 mg/kg of GGA for 5 days significantly suppressed the increase in wet colon weight of mice with TNBS-induced colitis compared with treatment with the vehicle (0.51±0.01 g, P<0.05) (Fig. 3).

Effects of GGA on histological findings in the colons of mice with TNBS-induced colitis. Colon tissue from mice with TNBS-induced colitis was histologically evaluated using H&E staining. In non-treated mice and ethanol-treated mice, there were no findings of colitis (histological scores: 0±0 and 0.2±0.2, respectively) (Fig. 4A). On the other hand, transmural infiltration of leukocytes with crypt loss and destruction of epithelial cells were found in colon tissues from vehicle-treated mice with TNBS-induced colitis (Fig. 4A, left panel). Treatment with 300 mg/kg of GGA for 5 days greatly improved inflammatory infiltration and tissue destruction in the colon tissues (Fig. 4A, right panel). The histological score was significantly decreased in GGA-treated mice with TNBS-induced colitis compared with that in vehicle-treated mice with TNBS-induced colitis (1.8±0.5 and 2.8±0.4, respectively, P<0.05 vs. vehicle-treated mice) (Fig. 4A).

Effect of GGA on MPO activity in mice with TNBS-induced colitis. To assess the effect of GGA on neutrophil accumulation, we measured the levels of MPO activity in the colon tissue. The levels of MPO activity were low in non-treated mice and ethanol-treated mice (0.30±0.18 and 0.47±0.23 U/g protein, respectively) (Fig. 5). Intrarectal administration of TNBS markedly increased the level of MPO activity in the colon tissue of mice treated with the vehicle (2.40±0.25 U/g protein) (Fig. 5). On the other hand, mice treated with 300 mg/kg of GGA for 5 days showed a remarkable reduction in the level of MPO activity in colon tissue compared with vehicle-treated mice (1.38±0.07, P<0.01) (Fig. 5).

Effect of GGA on infiltration of CD4-positive T cells in the colons of mice with TNBS-induced colitis. Immunohistochemistry for CD4 was performed to evaluate the effect of GGA on the infiltration of T cells in mice with TNBS-induced colitis. The number of CD4-positive stained cells was increased in the colon tissue of mice given TNBS and
vehicle (35.6±4.3/mm²) (Fig. 6A, left panel and B). In mice
given TNBS and treated with 300 mg/kg of GGA for 5 days,
the increase in numbers of CD4-positive stained cells in the
colon tissue was significantly suppressed (15.2±2.5/mm²,
P<0.01, vs. vehicle-treated mice) (Fig. 6A, right panel and B).

Figure 4. Effects of GGA on histological findings in the colon tissue of mice
with TNBS-induced colitis. Colitis was induced by intrarectal instillation of
0.5 mg of TNBS with 0.1 ml of 50% ethanol. Mice were repeatedly treated
with 300 mg/kg of GGA every other day up to day 5. (A) The micro-
photograph of the colon mucosa of mice with TNBS-induced colitis. Left
panel, vehicle-treated mice; right panel, 300 mg/kg of GGA-treated mice.
Representative pictures are shown. Similar results were obtained from the
samples from other mice (original magnification x200). (B) Histological
scores in the colon tissue. Values are expressed as mean ± SE. n=5; *P<0.01
vs. vehicle-treated mice.

Figure 5. Effect of GGA on MPO activity in mice with TNBS-induced colitis.
Colitis was induced by intrarectal instillation of 0.5 mg of TNBS with 0.1 ml
of 50% ethanol. Mice were repeatedly treated with 300 mg/kg of GGA every
other day up to day 5. Normal, non-treated mice; EtOH, ethanol-treated mice;
vehicle, vehicle-treated mice with TNBS colitis; GGA, 300 mg/kg of GGA-
treated mice with TNBS colitis. Values are expressed as mean ± SE. n=5;
*P<0.01 vs. vehicle-treated mice.

Figure 6. Immunohistochemistry for CD4 in the colon tissue of mice with
TNBS-induced colitis. (A) Left panel, the microphotograph in the specimen
of colon from vehicle-treated mice with TNBS colitis. Right panel, colon from
GGA-treated mice with TNBS-induced colitis (original magnification x200).
(B) Number of infiltrating CD4-positive cells. The number of CD4-positive
staining cells was counted in the areas of 5 mice with a microscope. Average
of cell counts per mm² was calculated. Values are expressed as mean ± SE.
n=5; *P<0.05 vs. vehicle-treated mice.

Figure 7. Effect of GGA on induction of HSP70 in the colon tissue of mice.
Mice were orally and repeatedly given 300 mg/kg of GGA or vehicle every
other day for 5 days. Colon tissue was removed from mice 5 days post-
initial treatment with GGA or vehicle. Western blot analysis for HSP70 in
the sample of colon was performed. Normal, non-treated mice; EtOH,
ethanol-treated mice; vehicle, vehicle-treated mice with TNBS colitis; GGA,
300 mg/kg of GGA-treated mice with TNBS colitis. Representative results
are shown. Similar results were obtained from three complete experiments.
Effect of GGA on enhancement of HSP70 expression in the colons of mice with TNBS-induced colitis. The expression of HSP70 in the colons of mice with TNBS-induced colitis was determined by Western blot analysis with an antibody specific for HSP70. The expression of HSP70 was weakly detected in colon tissue from non-treated, ethanol-treated and vehicle-treated mice on day 5 (Fig. 7). The HSP70 expression level was markedly increased in colon tissue from mice treated with 300 mg/kg of GGA for 5 days (Fig. 7).

Discussion

Several murine models of colitis resembling human IBD have been developed to analyze the pathogenesis and the therapeutic effects of drugs. TNBS-induced colitis, which is induced by intrarectal instillation of TNBS, is one of the useful experimental colitis models in mice (25,28,29). This model is characterized by marked transmural infiltration of leukocytes, mainly T cells. This model of inflammation is considered to be associated with a T-helper 1 cell response and is immunologically similar to Crohn's disease, in which Th1 cells are observed predominantly in the inflammatory lesion (29,30). In this study, we investigated the effect of GGA using a model of colitis induced by TNBS in mice, and we demonstrated that GGA protected mice from TNBS-induced colitis.

GGA has been reported to prevent gastric mucosa from inflammation and ulceration in several experimental models induced by chemicals (9,10,13,31,32). GGA has a protective effect against damage caused by non-steroidal anti-inflammatory drugs (NSAIDs), including indomethacin, in gastric mucosal cells (10,32). In other organs, GGA protects tissues such as the heart and liver from ischemic and surgical damage (14,15). In this study, we demonstrated that GGA clinically and histologically protected mice from TNBS-induced colitis. Our results reveal that GGA potentially plays an anti-inflammatory role in the development of TNBS-induced colitis.

In addition to the clinical and histological findings, it was found that the level of MPO activity, as a critical acute inflammatory mediator, in the colon was suppressed in GGA-treated mice compared with that in vehicle-treated mice. MPO activity has been shown to be positively correlated with accumulation of neutrophils in local lesions in colons of mice with colitis (27,33). It is thought that treatment with GGA suppresses the increase in neutrophil accumulation in the colons of mice with TNBS-induced colitis. Recently, it has been reported that GGA regulates the expression of interleukin-8 in the gastric mucosa (34,35). Although the mechanism by which GGA suppressed neutrophil accumulation in colon tissue from mice with TNBS-induced colitis was not clarified in the present study, previous studies and the present study suggest that GGA inhibits neutrophil accumulation via mediating the expressions of chemokines in the colon.

An increase in T cells infiltrating the colon mucosa is commonly observed in mice with TNBS-induced colitis (29,30). We evaluated the infiltration of T cells into the colon mucosa to investigate the effect of GGA in mice with TNBS-induced colitis. In immunohistochemistry for CD4, treatment with 300 mg/kg of GGA for 5 days inhibited the increase in number of T cells infiltrating the colon tissue compared with that in mice treated with the vehicle. There has been no study in which effects of GGA on infiltration of T cells and activation of T cell-related mediators were investigated. Our results suggest that GGA may, at least partly or indirectly, suppress the activation of T cells in mice with TNBS-induced colitis.

Recent studies have partially clarified one of the defense mechanisms of GGA in the protection of cells and tissues. GGA markedly and immediately up-regulates the expression of endogenous HSP70, which plays an important role in the protection of cells from stress (13). An in vitro study has shown that up-regulation of HSP70 expression induced by GGA inhibits the process of apoptosis caused by hydrogen peroxide and ethanol in cultured rat hepatocyte (36). Moreover, it has been reported that GGA immediately induces the expression of HSP70 in the rat gastric mucosa (13). These findings suggest that the mechanism of tissue protection by GGA mainly depends on the enhancement of HSP70 expression by GGA. Transgenic overexpression of HSP70 also protects tissues against oxidative and ischemic stresses (21,22). On the other hand, lack of HSP70 severely aggravates cerebral ischemia and infarction in the mouse brain (37). Taken together, the findings suggest that HSP70 plays an essential role in protection against various types of tissue damage. Our previous study also demonstrated a protective effect of GGA on DSS-induced colitis in mice (38). Treatment with GGA significantly improved the clinical and histological findings in the colons of mice with DSS-induced colitis. In addition, administration of GGA enhanced the expression of HSP70 in the colon tissue of mice under normal conditions. Moreover, repeated administration of GGA for 7 days up-regulated the expression of HSP70 in surface epithelial cells in the colon mucosa. In this study, we found that treatment with 300 mg/kg of GGA for 5 days remarkably up-regulated the expression of HSP70 in the colon tissue of mice given TNBS. Although further study is needed to elucidate the effect and mechanism of induction of HSP70 by GGA in the colon, HSP70 enhanced by GGA may partly contribute to the protection of mice against TNBS-induced colitis.

In conclusion, we demonstrated in this study that GGA protects mice against experimental colitis induced by TNBS. In this model, GGA suppressed the increase of neutrophilic accumulation and strongly enhanced HSP70 expression in the colon. These results provide further evidence that GGA has an anti-inflammatory property in intestinal inflammation and that GGA is a useful drug for the treatment of colitis, including IBD.

Acknowledgements

We thank Rika Nagashima and Somako Tone for their technical assistance. This work was supported in part by a grant from the Japanese Ministry of Health, Labor and Welfare.

References


