Protein phosphatase 2A interacts with Chk2 and regulates phosphorylation at Thr-68 after cisplatin treatment of human ovarian cancer cells

XIAOBING LIANG, EDDIE REED and JING JIE YU

Department of Biochemistry and Molecular Pharmacology, Mary Babb Randolph Cancer Center, Robert C. Byrd Health Sciences Center, West Virginia University, 1610-C Health Sciences South, Morgantown, WV 26506-9300, USA

Received December 21, 2005; Accepted February 3, 2006

Abstract. High-fidelity maintenance of genomic integrity in eukaryotes is ensured by cell cycle checkpoints and DNA repair. The checkpoint kinase, Chk2, has been implicated in both of these responses. In response to DNA damage, Chk2 is initially phosphorylated at Thr-68, which leads to its full activation. The fully activated Chk2 then phosphorylates downstream substrates of cell cycle control. However, the mechanism of inactivation of Chk2 is still unknown. Protein phosphatase type 2A (PP2A) plays an essential role in cell cycle regulation and induction of G2 arrest by a mechanism of phosphorylation/dephosphorylation with a variety of protein kinases. Data from our investigation provide evidence that, in response to cisplatin exposure, PP2A associates with Chk2 as a complex in cells and functions as a negative regulator of Chk2 activation by dephosphorylating p-Chk2. Results from immunostaining and coimmunoprecipitation demonstrate that Chk2 and PP2A can colocalize in cells, and the holoenzyme of PP2A (subunits A, B and C) coimmunoprecipitates with p-Chk2. Further, inhibition of PP2A by okadaic acid, an inhibitor of PP2A, and by small interfering RNA (siRNA) to PP2A results in enhanced Chk2 phosphorylation, implicating a direct enzyme-substrate relationship. An in vitro PP2A dephosphorylation assay shows that PP2A dephosphorylates p-Chk2 in a cell-free system. These findings suggest that Chk2 is activated after cisplatin exposure and negatively regulated by a tightly associated protein serine/threonine phosphatase, PP2A.

Introduction

To protect genomic integrity and ensure survival, mammalian cells exposed to genotoxic stress halt cell cycle progression and result in apoptosis or DNA repair. Disruption of the cell cycle checkpoint/DNA-repair system leads to genomic instability and the development of cancer (1). Chk2, the mammalian homolog of the checkpoint kinases, Cds1 (Schizosaccharomyces pombe) and Rad53 (Saccharomyces cerevisiae), is a DNA damage-activated protein kinase (2). In response to IR and dsDNA breaks, Chk2 is initially phosphorylated at Thr-68, which then leads to further activation at Thr-383 and Thr-387, as well as autophosphorylation of Chk2 in a phosphothreonine 68-dependent manner (3-6). The fully activated Chk2 phosphorylates downstream substrates of cell cycle control (2-7). Chk2-ES cells are defective in maintaining IR-induced cell cycle arrest at G2 phase (8). Heterozygous germline mutations in the Chk2 gene have been identified in cancer predisposition syndrome Li-Fraumeni patients and other human cancers, suggesting that Chk2 plays a pivotal role in controlling activities of the cell cycle checkpoint (9,10).

The heterotrimeric protein, phosphatase type 2A (PP2A) is a major phosphatase involved in cell cycle checkpoints, regulation of signaling pathways and inactivation of a variety of kinases by a mechanism of phosphorylation/dephosphorylation of proteins (11,12). The holoenzyme of PP2A consists of a core AC heterodimer associated with a variety of regulatory B subunits (B=PR55, B'=B56 and B"=PR72) (13-15). These B subunits regulate the subcellular localization and substrate specificity of PP2A, and distinct PP2A heterotrimers can dephosphorylate different sites on the same substrate (16). In mammalian cells, PP2A is widely expressed and mutations in PP2A subunits are found in multiple cancers (17,18).

Our hypotheses were that the checkpoint kinase, Chk2, may be inactivated by PP2A and that the two proteins, serine/threonine kinase Chk2 and serine/threonine phosphatase PP2A, may directly interact in DNA damage-repair signaling. In this report, we provide evidence that PP2A associates with Chk2 as a complex and functions as a negative regulator of Chk2 signaling in response to cisplatin stimulation. This occurs via dephosphorylating p-Chk2 after cisplatin treatment in human ovarian cancer cells.

Materials and methods

Cell culture and treatment. The A2780 human ovarian cancer cell line was used in the current investigation. Cells were
cultured in monolayer using RPMI-1640 media supplemented with 10% (v/v) fetal calf serum, 2 mM L-glutamine, 0.2 units/ml human insulin, 50 units/ml penicillin, 50 mg/ml streptomycin (Life Technologies, Inc., Gaithersburg, MD, USA). Cells were logarithmically grown at 37°C in a humidified atmosphere consisting of 5% CO₂ and 95% air. Cells were routinely recovered from frozen stocks and allowed to grow until 85% confluence. For all experiments, cells were plated the day before exposure to treatment.

Cisplatin or CDDP (Sigma-Aldrich, St. Louis, MO) was prepared fresh daily by first dissolving it in phosphate-buffered saline (PBS) without Ca⁺⁺ or Mg⁺⁺ at a concentration of 1 mg/ml, and then further diluting it into pre-warmed media to achieve the IC₅₀ dose of 5-day survival (3 μM) for A2780 cells. For the studies of cisplatin time-course, cells were allowed to grow for 24 h to reach 70-80% confluence. Cells were treated with cisplatin for 1 h at 3 μM. At the end of the 1-h exposure to cisplatin, cells were washed twice with phosphate-buffered saline without Ca⁺⁺ or Mg⁺⁺ and then incubated with fresh drug-free media for a specific period of time.

The reagent, okadaic acid (OA), was purchased from Sigma-Aldrich. In studies using inhibitor treatment, cells were pretreated for 30 min with different concentrations. Okadaic acid was prepared in DMSO and added to cells to achieve the respective dose and incubated for 30 min. Cisplatin was then added to the cells at a specific IC₅₀ dose (3 μM) under continuous exposure to OA. At the end of the 1-h exposure to cisplatin, cells were washed twice with PBS and then incubated for 24 h with fresh medium containing OA inhibitor. The cells were then harvested for the indicated assays.

Immunostaining and microscopy. Cells were fixed for 10 min in PBS/3% paraformaldehyde/2% sucrose solution, followed by 5-min permeabilization on ice in Triton buffer (0.5% Triton X-100 in 20 mM HEPES pH 7.4, 50 mM NaCl, 3 mM MgCl₂ and 300 mM sucrose). Cells were blocked for 1 h in 1% BSA and incubated overnight with anti-p-Chk2 antibody or anti-PP2A antibody at 1:400 and at 4°C. PP2A and p-Chk2 were visualized using secondary antibodies, fluorescein goat anti-β-globulin (Santa Cruz, CA); PP2A-C subunit and PP2A-A subunit antibodies (Upstate Biotechnology, Lake Placid, NY); and HA-Tag monoclonal antibody (Cell Signaling, MA). To demonstrate the equal loading of each sample, membranes were re-probed with β-actin using anti-β-actin antibody (Sigma). The signals of immunoreactive proteins were visualized using horseradish peroxidase-conjugated sheep anti-mouse or donkey anti-rabbit antibodies (Amersham, UK) and enhanced using an Chemiluminescence ECL detection system (Amersham).

siRNA-mediated PP2A silencing assay. Small interfering RNAs (siRNAs) against the catalytic subunit of PP2A to the human PP2A (siRNA SMARTpool) were purchased from Upstate Biotechnology. The siRNA transfection reagent, Lipofectamine 2000 (Invitrogen), was used to transfect siRNA into A2780 cells at a final concentration of 100 nM. Negative non-specific siRNA was used as a control. Twenty-four hours after transfection, cells were treated with cisplatin for 1 h at 3 μM. At the end of the 1-h exposure to cisplatin, cells were washed twice and then incubated with fresh drug-free media for 24 h. The cells were harvested and the protein level of p-Chk2 was determined by Western blot analysis.

Purification of recombinant HA-hChk2. A2780 cells were transfected with the plasmid, HA-hChk2 pEFBOS (provided by Dr Jann N. Sarkaria, Clinic of the Mayo Foundation, Rochester, MN), for the expression of HA-tagged wild-type human Chk2 (19). After 24-h transfection, cells were treated with cisplatin (3 μM) for 1 h and then continuously incubated with fresh media for 24 h. Cell lysate was obtained by lysing the cells in buffer [20 mM HEPES (pH 7.0), 1 mM DTT, 1 mM MnCl₂, 100 μg/ml BSA and 50 μM leupeptin]. After immunoprecipitation with HA-tagged monoclonal antibody (Cell Signal) and protein A/G-sepharose beads, HA-tagged Chk2 from the cell lysate was washed 3 times in lysis buffer and used for PP2A dephosphorylation assay in vitro.

Protein phosphatase activity assay. PP2A activity was measured using a Serine/Threonine Protein Phosphatase Assay kit (Upstate Biotechnology). According to the manufacturer's instructions, cells were extracted with lysis buffer consisting of 20 mM Tris-HCl (pH 7.4), 150 mM NaCl, 1% Nonidet P-40, 10 μg/ml leupeptin, 10 μg/ml aprotinin and 1 mM PMSF. Cell lysates (500 μg) from cisplatin-treated cells were immunoprecipitated with 4 μg of PP2A catalytic subunit antibody overnight at 4°C. At the end of incubation, 100 μl of
25% (w/v) protein A/G agarose was added, and incubation was continued for another 2 h at 4°C. The immunoprecipitates were washed 3 times with lysis buffer and resuspended in 25 μl of assay buffer (50 mM Tris-HCl, pH 7.0 and 0.1 mM CaCl₂). The reaction of protein phosphatase activity assay was initiated by adding 5 μl of 1 μg/μl phosphopeptide substrate (200 mM, KRpTIRR) and incubating for 10 min at 37°C. The reaction was then terminated by adding 100 μl of Malachite Green solution. Finally, the reaction mixture was spun down for 10 sec at 14,000 rpm. The absorbance of the supernatant was measured at 650 nm in a Spectra Max 384 microtiter plate reader (Molecular Devices Inc., Sunnyvale, CA). Phosphatase activity was calculated using a phosphate standard curve.

In vitro PP2A dephosphorylation assay. Whole cell lysates (40 μg) were prepared in PP2A reaction buffer [20 mM HEPES (pH 7.0), 1 mM dithiothreitol (DTT), 1 mM MnCl₂, 100 μg/ml BSA and 50 μM leupeptin] and incubated with PP2A enzyme 0.05 or 0.5 U (Upstate Biotechnology) for 30 min at 30°C. IP-purified Chk2 and recombinant HA-hChk2 proteins were reacted with PP2A enzyme (0.05 or 0.5 unit) for 30 min at 30°C in the presence or absence of OA. The reaction mixtures were separated on SDS-PAGE and blotted with p-Chk2 and Chk2 antibodies.

Densitometry and statistical analyses. Numerical values for the expression level of p-Chk2 (treated and untreated with cisplatin) in A2780 cells were calculated using IPLab-Gel software (Scanalytics, Inc., Fairfax, VA). For each sample, the densitometric readout value of p-Chk2 was corrected for the corresponding β-actin value and presented as relative expression.

Results

PP2A associates with Chk2 after CDDP exposure. To determine whether Chk2 and PP2A enzymes exist as a complex in cells, we first performed immunostaining to locate sites of association between the two enzymes. Cisplatin-treated cells double stained with anti-p-Chk2 antibodies (left, green) or anti-PP2A antibodies (middle, red) 16 h later. Colocalization of the two images is seen where the signal appears as yellow spots in the right panel. (B) Coimmunoprecipitation of PP2A with Chk2 and with HA-Chk2. Immunoprecipitations from cisplatin-treated A2780 cell extracts were performed with antibodies of anti-Chk2 (Chk2) or anti-normal mouse serum (NMS) (a). HA-Chk2 immunoprecipitates were obtained with anti-HA antibody from cells transfected with wild-type plasmid of HA-hChk2 pEFBOS and treated with cisplatin (b). Immune complexes were subjected to immunoblot analyses with anti-p-Chk2(Thr68), anti-Chk2, anti-PP2A-A, anti-PP2A-B and anti-PP2A-C antibodies.

Cisplatin induces increased Chk2 phosphorylation. The appearance of Chk2-PP2A complex after cisplatin treatment raises the possibility that phosphatase activity may regulate Chk2 signaling after cisplatin-induced DNA damage. To test...
this, we first assessed the effect of cisplatin on Chk2 phosphorylation. Exposing cells to cisplatin for 1 h first resulted in a slight decrease 3 h after cisplatin removal and then an increase in the amount of phosphorylated Chk2 at Thr-68 in a time-dependent manner (Fig. 2A). Quantitative analysis of phosphorylated Chk2 expression demonstrated that the cisplatin-induced phosphothreonine Chk2 was doubled at 24 h compared to the control (Fig. 2B).

Inhibition of PP2A by siRNA enhances Chk2 phosphorylation. To examine PP2A as a negative regulator of Chk2 phosphorylation, we used small interfering RNA (siRNA) to silence the expression of PP2A protein by RNA interference (RNAi) in A2780 cells. Cells transfected with specific siRNA to the catalytic subunit of human PP2A (containing 4 pooled SMART selected siRNA duplexes with ‘UU’ overhangs and a 5’ phosphate on the antisense strand) and treated with cisplatin resulted in a hyperphosphorylated p-Chk2 at Thr-68 compared to the non-specific siRNA-treated control (Fig. 2C), indicating that the reduced amount of PP2A promoted 68-threonine phosphorylated Chk2.

PP2A modulation has no effect on p53 phosphorylation. To demonstrate that increased p-Chk2 in siRNA to PP2A assay is not induced by endogenous damage (cisplatin) but by the failure of PP2A in Chk2 dephosphorylation, we also examined the level of p53 phosphorylation after cisplatin exposure.
which was due to the PP2A inhibition to a 50% reduction of abundance of phosphorylated Chk2 at Thr-68 (Fig. 3A), cells. Treatment of cells with OA (20 nM) resulted in increased phosphatase activity (Fig. 3B), indicating that PP2A is involved in the Chk2 pathway as an inhibitory participant in the signaling process. These results demonstrate that PP2A has a strong effect on Chk2 after DNA damage induced by the genotoxic reagent, cisplatin, and promoted 68 threonine-phosphorylated Chk2 induced by cisplatin (Fig. 2C).

To further confirm the possibility that PP2A dephosphorylates Chk2, we used small interfering RNA (siRNA) to silence the expression of PP2A protein in A2780 cells expressing HA-tagged wild-type Chk2, and performed immunoprecipitation using the anti-HA antibody. A, B and C subunits of PP2A were detected in the immunoprecipitates prepared by anti-Chk2 and anti-HA. The B56 subunit was not found in the immunoprecipitates of our investigation (data not shown). The interaction of PP2A with Chk2 appears to be specific and functional because the dephosphorylation of Chk2 in vitro by the purified PP2A enzyme was concentration-dependent, and the dephosphorylation of Chk2 was blocked by OA, an inhibitor of PP2A.

We have demonstrated that OA treatment enhanced the phosphorylation of Chk2 at Thr-68 after cisplatin treatment (Fig. 3A). OA is the cell-permeant inhibitor of PP1 and PP2A, and inhibits PP2A (50% inhibitory dose IC50, 1-10 nM) more potently than PP1 (IC50, 100 nM to 1 μM) (28). As 20 nM OA promoted the phosphorylation of Chk2, PP2A was thought to be more important in phospho-Thr-68 of Chk2. To further confirm the possibility that PP2A dephosphorylates Chk2, we used small interfering RNA (siRNA) to silence the expression of PP2A protein in A2780 cells. siRNA to PP2A reduced the protein amount of PP2A and promoted 68 threonine-phosphorylated Chk2 induced by cisplatin (Fig. 2C).

Our observations indicate that using specific siRNA to PP2A inhibited PP2A activity of p-Chk2 dephosphorylation, and resulted in an increase of phosphate on threonine-68 of Chk2. To address the possibility that the increased level of p-Chk2 might be caused by an endogenous damage signal that increases the rate of phosphorylation of Thr-68, rather than the failure of PP2A to remove the phosphate on Thr-68, we performed additional experiments. Experiments using p53 showed that the phosphorylation level of other ATM/ATR substrates is not increased in response to DNA damage under the same conditions for p-Chk2 assessment (in siRNA to PP2A assay). Of note, p53 has been reported to be an important

Figure 4. Direct dephosphorylation of p-Chk2 by PP2A in vitro. Chk2 was phosphorylated by cisplatin treatment to the A2780 cells. Forty μg of whole cell lysates (A), Chk2-immunoprecipitated protein (B), or HA-Chk2 immunoprecipitated protein (C) was incubated with 0.05 or 0.5 units of PP2A enzyme in the presence or absence of the phosphatase inhibitor OA (B and C), which was used to verify the specificity of the PP2A effect.

Jallepalli et al suggested that p53 is independent of Chk2 in the DNA-damage signaling pathway (21). As shown in Fig. 2C, p53 phosphorylation at Ser-15 in cells treated with cisplatin and siRNA to PP2A is not greater than the level of phosphorylated p53 in cells treated with cisplatin and non-specific siRNA control. This indicates that the increased level of p-Chk2 was due to the failure of PP2A to remove the phosphate on Thr-68.

Inhibition of PP2A by okadaic acid enhances Chk2 phosphorylation. We also assessed the effect of okadaic acid (OA), an inhibitor of PP2A (20), on Chk2 phosphorylation in these cells. Treatment of cells with OA (20 nM) resulted in increased phosphatase activity (Fig. 3B), indicating that PP2A is involved in the Chk2 pathway as an inhibitory participant in the signaling process. These results demonstrate that PP2A has a strong effect on Chk2 after DNA damage induced by the genotoxic reagent, cisplatin, in these cells.

PP2A dephosphorylates Chk2 in vitro. To further determine whether PP2A acts directly on Chk2, we performed an in vitro dephosphorylation assay. PP2A enzyme was coincubated with either whole cell lysate (Fig. 4A), Chk2 (Fig. 4B), or recombinant HA-hChk2 (Fig. 4C). Anti-p-Chk2(Thr68) and anti-Chk2 antibodies were used to identify the coprecipitated protein complex. Increasing amounts of PP2A led to decreasing amounts of p-Chk2(Thr68) in all three circumstances. p-Chk2(Thr68) could be restored by inhibition of PP2A with okadaic acid (Fig. 4B and C).
substrate of the ATM/ATR-dependent pathway in response to DNA damage (1).

In conclusion, we propose that PP2A has an important regulatory function on Chk2, which is to dephosphorylate Chk2 at Thr68 as needed in response to cellular exposure to DNA damaging agents. Dozier and colleagues, using the yeast two-hybrid screen technique, demonstrated similar findings that B' gamma3 is a potent Chk2 substrate (29). Data generated from our series of experiments that included stimulation and suppression of the two enzymes, in vitro and in vivo, provide strong evidence that functional protein ser/thr phosphatase 2A (PP2A) interacts with Chk2 and functions as a negative regulator of this checkpoint kinase by dephosphorylating phosphor-Thr-68. These findings are important with respect to understanding the role that Chk2 plays in controlling cell cycle checkpoints and DNA damage/repair pathways.

Acknowledgements

We would like to thank Dr Jann N. Sarkaria at the Mayo Foundation, Rochester, MN, for providing the wild-type and mutated plasmids of HA-hChk2 for our investigation, and Professor Heimo Riedel and Michael D. Mueller for editorial consultation.

References

29. Gupta et al. PP2A REGULATES Chk2