Adiponectin receptor expression in the human adrenal cortex and aldosterone-producing adenomas

GIAN PAOLO ROSSI1, DANIELE STICCHI1, LUISA GIULIANI1, PAOLO BERNANTE2, SILVIA ZAVATTIERO1, ACHILLE C. PESSINA1 and GASTONE G. NUSSDORFER 3

Departments of 1Clinical and Experimental Medicine (DMCS-Internal Medicine 4), 2Medical and Surgical Sciences (Surgical Pathology) and 3Human Anatomy and Physiology (Section of Anatomy), School of Medicine, University of Padua, I-35121 Padua, Italy

Received December 19, 2005; Accepted February 7, 2006

Abstract. Adiponectin is an adipocyte-derived circulating peptide that plays an important role in adipose tissue metabolism, insulin sensitivity and cardiovascular disease. The adrenal gland, by secreting glucocorticoid and mineralocorticoid hormones, intervenes in cardiovascular and glucose metabolism regulation and is surrounded by adipose tissue. Hence, we investigated the hypothesis that adiponectin receptor types 1 and 2 (adipo-R1 and adipo-R2) are expressed in the human adrenal gland and in adrenocortical zona glomerulosa cell-derived aldosterone-producing adenoma (APA) tissue. We used real-time reverse transcription-polymerase chain reaction to demonstrate the mRNA of adipo-R1 and adipo-R2 in 10 histologically normal human adrenal cortexes that were obtained from patients with renal cancer undergoing nephrectomy with ipsilateral adrenalectomy and in 10 APAs. Melting curve analysis and sequencing were used to confirm the specificity of the amplicons obtained. Results consistently showed the expression of specific mRNAs of adiponectin receptors in all histologically normal human adrenal cortexes and APAs. This novel finding suggests that adiponectin could play a regulatory role in adrenocortical function and growth in humans.

Introduction

Adiponectin, an adipose tissue derived peptide (1, reviewed in ref. 2), exerts anti-inflammatory and anti-atherogenic effects by inhibiting crucial steps of atherogenesis (3-6), stimulating nitric oxide production (7) and blunting the expression of adhesins on the endothelium (3, reviewed in ref. 8). The evidence linking blood adiponectin levels with arterial hypertension remains conflicting (9-14), even though low plasma adiponectin concentrations have been implicated in endothelial dysfunction, a hallmark of arterial hypertension and other conditions associated with high cardiovascular risk (15,16). Low plasma adiponectin levels have been also described in obesity, where they increase during weight reduction (17-19) and in type 2 diabetes (20). Moreover, because supplying physiological doses of recombinant adiponectin were found to correct hyperinsulinemia and insulin resistance (21), low plasma adiponectin concentrations have been suggested to play a causal role in insulin resistance (18,22,23). Therefore, blunted blood adiponectin levels would appear to be a hallmark of high cardiovascular risk conditions and hyperinsulinemia.

Two recently identified adiponectin receptor subtypes, referred to as adipo-R1 and adipo-R2, mediate the biological effects of adiponectin. The cloning and sequencing of the genes coding these receptor subtypes have been recently accomplished, thus providing novel opportunities for the investigation of their tissue distribution at the mRNA level (2,24). As the adrenal gland is not only exposed to circulating adiponectin but is deeply embedded in adipose tissue, endocrine-paracrine interactions might exist between the adrenal cortex and adipocytes. Hence, we decided to test the hypothesis that adipo-R1 and adipo-R2 genes are expressed in the histologically normal human adrenal cortex and in tumors that are derived from the adrenal zona glomerulosa.

Materials and methods

Adrenal specimens. Histologically normal adrenocortical tissue was obtained at surgery from 10 patients with renal cancer undergoing unilateral nephrectomy and ipsilateral adrenalectomy. Furthermore, 10 patients with an aldosterone-producing adenoma (APA) were enrolled. In these patients the diagnosis was based on strict predefined criteria that were based on lateralization of aldosterone secretion at adrenal vein sampling, on surgery, pathology and, more importantly, follow-up data. For the latter, we required demonstration of normokaliemia and, according to the AHA guidelines (25), cure or improvement of hypertension at least 120 days after adrenalectomy. Cure was defined as a systolic blood pressure...
of <140 mmHg and diastolic blood pressure of <90 mmHg without medications; and improvement as a systolic and diastolic blood pressure of <140/90 mmHg, respectively, on the same or reduced number of medications and/or reduced defined daily doses, as described by the World Health Organization (26). The main anthropometric and clinical features of patients with APA are shown in Table I. Tissue specimens were obtained at surgery under sterile conditions, immediately frozen in liquid nitrogen, and stored at -80˚C until extraction, as previously described (27). Peri-adrenal adipose tissue obtained from three APA patients was similarly processed as control.

Table I. Anthropometric and biochemical features of the patients with APA.

<table>
<thead>
<tr>
<th>Feature</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>52±12</td>
</tr>
<tr>
<td>Gender (male/female)</td>
<td>4/6</td>
</tr>
<tr>
<td>Systolic blood pressure (mmHg)</td>
<td>172±17</td>
</tr>
<tr>
<td>Diastolic blood pressure (mmHg)</td>
<td>107±11</td>
</tr>
<tr>
<td>Serum K⁺ concentration (mmol/l)</td>
<td>3.1±0.5 [3.6-4.5]</td>
</tr>
<tr>
<td>Plasma renin activity (ng Ang-I/ml/h)</td>
<td>0.19 (0.09-0.36) [0.65-2.65]</td>
</tr>
<tr>
<td>Aldosterone plasma concentration (pg/ml)</td>
<td>397 (221-660) [<110]</td>
</tr>
<tr>
<td>Cortisol plasma concentration (ng/ml)</td>
<td>147 (46-259) [<46]</td>
</tr>
<tr>
<td>ACTH plasma concentration (pg/ml)</td>
<td>13.2 (4.5-46.3) [15-22]</td>
</tr>
</tbody>
</table>

Means ± SEM, n=10; ranges in parentheses. Normal values are shown in square brackets.

Measurement of adiponectin-receptor mRNAs. Total RNA was isolated from frozen tissue using the guanidine isothiocyanate method (Omnizol Kit™, EuroClone, Milan, Italy). The method used to investigate adipo-R1 and adipo-R2 mRNAs entails a novel real-time reverse transcription (RT)–polymerase chain reaction (PCR) that was applied for the first time in this study. We used the LightCycler Instrument™ and LightCycler Design Probe™ software (both from Roche, Monza, Italy). For this approach, it is crucial that the RNA preparation is free of contaminating DNA which can lead to overestimation of the amount of RNA. Hence, the quality of the RNA was systematically checked using lab-on-a-chip technology in an Agilent Bio-analyzer 2100 with the RNA6000 nano assay (Agilent Technologies, Palo Alto, CA). To exclude the possibility of cross-amplification between the two genes, which share 67% homology (2), we blasted the mRNA sequences of the adipo-R1 versus adipo-R2 to identify the homologous regions; then, we designed primers that were selective for each adiponectin receptor gene. Primers were chosen to span exon-intron boundaries, in order to prevent occurrence of co-amplification of genomic DNA. Adipo-R1 and adipo-R2 (1 μg) encoding mRNA was reverse-transcribed with Iscript™ (Bio-Rad, Milan, Italy), and 2 μl of each RT reaction was amplified with specific primers by using a Fast Start SYBR-Green Plus Kit™ (Roche) in a glass capillary according to the manufacturer’s instructions. The mRNA encoding for porphobilinogen deaminase (PBGD) was similarly processed for use as a housekeeping gene in a separate one-step RT-PCR, as detailed earlier (28). This served as a control for RT-PCR performance. Primer sequences are shown in Table II. Cycle conditions were the same for all genes tested: initial denaturation at 95˚C for 10 min, followed by 40 PCR cycles consisting of 95˚C for 5 sec, 58˚C for 10 sec and 72˚C for 15 sec. SYBR-Green I fluorescence emissions were monitored after each cycle. Expression of adipo-R1, adipo-R2 and PBGD mRNA was quantified by the second derivative maximum method of the LightCycler software (Roche), by determining the crossing points of individual samples by an algorithm which identifies the first turning point of the fluorescence curve. Adipo-R1 and adipo-R2 expression was calculated relative to PBGD, which was used as an internal control. Amplification of specific transcripts was confirmed by melting curve profiles (cooling the sample to 50˚C and

Table II. RT-PCR primers and PCR products.

<table>
<thead>
<tr>
<th>Primers</th>
<th>Sequence</th>
<th>Accession no.</th>
<th>Amplicon size (bp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adipo-R1</td>
<td>5'-CCAAAGCTGAAGAAGAGAGCAA-3'</td>
<td>NM_015999</td>
<td>134</td>
</tr>
<tr>
<td>Sense</td>
<td>5'-TTCCCTCCCAGACCTTGTA-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antisense</td>
<td>5'-ACATCTGTTTCATCTCATC-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adipo-R2</td>
<td>5'-ACATCTGTTTCATCTCATC-3'</td>
<td>NM_024551</td>
<td>214</td>
</tr>
<tr>
<td>Sense</td>
<td>5'-ATCATGTAGCCAGCGAGGA-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antisense</td>
<td>5'-TGCCAGAGAGATTGTGT-3'</td>
<td>NM_000190</td>
<td>463</td>
</tr>
<tr>
<td>PBGD</td>
<td>5'-TGCCAGAGAGAGATTGTGT-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sense</td>
<td>5'-ATGCTATCTGAGCCG-3'</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antisense</td>
<td>5'-TGCCAGAGAGAGATTGTGT-3'</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
heating slowly to 95°C with measurement of fluorescence) at the end of each PCR cycle, using the specific routine built-up in the LightCycler instrument. The specificity of the PCR was further verified by sequencing analysis. The products of PCR were cleaned using a GenElute™ PCR Clean-up kit (Sigma-Aldrich Corp., St. Louis, MO), dehydrated, re-amplified using the original primers, and sequenced by the BigDye Terminator cycle sequencing reaction and an ABI PRISM 3100 Genetic Analyzer with support from CRIBI (Centro Ricerca Interdipartimentale Biotecnologie Innovative) at the University of Padua, Italy. Quantification of gene expression was carried out relative to PBGD by determining the threshold cycle (Ct) of the target genes, as described previously (29).

Statistical analysis. Comparison of the expression of adipo-R1 and adipo-R2 genes between the normal adrenal cortex and APA tissue was performed using the non-parametric Mann-Whitney test. Statistical analysis was performed using SPSS for Windows software (Vers. 13.0, SPSS Italy Inc., Bologna, Italy).

Results

The novel real-time RT-PCR methodology developed in this study illustrates the feasibility of detecting adipo-R1 and adipo-R2 gene specific mRNAs in human tissues (Fig. 1A). The melting curve analysis revealed a clean well-defined peak (Fig. 1B) at the temperature of 86.3 and 87.7°C for the...
adipo-R1 and adipo-R2 genes, respectively, thus ruling out the amplification of non-specific products. Furthermore, the sequencing of the amplicons conclusively confirmed the exact correspondence between the obtained and the expected sequences (Fig. 2).

This methodology allowed the detection of specific mRNAs of adipo-R1 and adipo-R2 genes, not only in adipose tissue but also in adrenocortical tissue specimens. Histologically normal adrenocortical tissue (Figs. 1 and 3), APA specimens (Fig. 3) and control adipose tissue (data not shown) were found to consistently express both adiponectin receptor subtypes. Results of quantification relative to the housekeeping gene, PBGD, showed that both the adipo-R1 and the adipo-R2 mRNAs were expressed at a significantly higher level in APAs than in the normal adrenal cortex (Fig. 4).

Discussion

The intimate relationship between the amount of adipose tissue on one hand and the sensitivity to insulin, and blood pressure levels on the other, suggests the hypothesis that adipose tissue modulates the release of hormones that are involved in glucose metabolism. The present results demonstrate for the first time that the genes of the two known adiponectin receptor subtypes are expressed in the normal human adrenal cortex. Hence, the possibility of a cross-talk between adipose tissue and the adrenal cortex is suggested. However, as we used RNA extracted from tissue homogenates, our gene expression experiments do not allow any precise localization of adiponectin receptors in the human adrenal cortex. Moreover, they do not conclusively prove that these receptor subtypes are functionally expressed at the protein level. Accordingly, studies with in situ hybridization, immunocytochemistry, autoradiography and binding displacement are necessary to address these limitations.

Other peptides produced by adipocytes, e.g. leptin (30-34) and beacon (35-38), or regulating fat metabolism and energy homeostasis, e.g. orexins (39-42), neuropeptide-Y (43), neuropeptides-B and -W (44,45) and cholecystokinin (46-48), may control adrenal functions. Hence, it is tempting to hypothesize that adiponectin can regulate the release of cortisol and aldosterone from the adrenal cortex, with ensuing effects on gluconeogenesis, fat deposition, insulin sensitivity, electrolyte and water homeostasis, and ultimately on blood pressure levels.

By studying high cardiovascular risk patients, we recently found, in accordance with previous studies (13,49), that body...
This study was supported by research grants from Unindustria of Treviso and F.O.R.I.C.A. to professor G.P. Rossi.

Acknowledgements

This study was supported by research grants from Unindustria of Treviso and F.O.R.I.C.A. to professor G.P. Rossi.

References

