Inhibition of oxidative stress-induced invasiveness of cancer cells by *Ganoderma lucidum* is mediated through the suppression of interleukin-8 secretion

ANITA THYAGARAJAN¹, JIAHUA JIANG¹, AMBER HOPF², JIRI ADAMEC² and DANIEL SLIVA¹,³,⁴

¹Cancer Research Laboratory, Methodist Research Institute, 1800 N Capitol Ave, E504, Indianapolis, IN 46202; ²Bindley Bioscience Center, Purdue University, West Lafayette, IN; ³Department of Medicine, and ⁴Indiana University Cancer Center, School of Medicine, Indiana University, Indianapolis, IN, USA

Received February 23, 2006; Accepted April 19, 2006

Abstract. Epidemiological studies suggest that the intake of natural/nutrient products is inversely related to cancer risk. While oxidative stress, generating reactive oxygen species, has been linked to cancer initiation and progression, dietary antioxidants have reduced the risk of certain cancers. Experimental studies have demonstrated that antioxidants and phytochemicals could prevent cancer metastasis, and antioxidants were suggested as adjuvants in cancer therapy. *Ganoderma lucidum* is an Asian medicinal mushroom that has been used for the past two thousand years for the treatment of various diseases, including cancer. *G. lucidum* is currently popular as a dietary supplement in the form of tea, powder or extract. We have previously demonstrated that *G. lucidum* suppresses growth, angiogenesis and invasiveness of highly invasive and metastatic breast cancer cells. The present study was undertaken to evaluate the effect of *G. lucidum* on oxidative stress-induced metastatic behavior of poorly-invasive MCF-7 breast cancer cells. We show that *G. lucidum* inhibits oxidative stress-induced migration of MCF-7 cells by the down-regulation of MAPK signaling. *G. lucidum* suppressed oxidative stress stimulated phosphorylation of extracellular signal-regulated protein kinases (Erk1/2), which resulted in the down-regulation of expression of c-Fos, and in the inhibition of transcription factors AP-1 and NF-xB. The biological effect of *G. lucidum* on cell migration was mediated by the suppression of secretion of interleukin-8 from MCF-7 cells exposed to oxidative stress. In summary, our results suggest that *G. lucidum* inhibits the oxidative stress-induced invasive behavior of breast cancer cells by modulating Erk1/2 signaling and can be potentially considered as an antioxidant in adjuvant cancer therapy.

Introduction

Breast malignancy usually progresses from non-invasive cancer to invasive, metastatic and therapy-resistant phenotype. Therefore, the highly invasive behavior of breast cancer cells results in the development of cancer metastasis, which was responsible for more than 40,000 breast cancer deaths in the United States in 2005 (1). Oxidative stress, which is mediated by reactive oxygen species (ROS), drives cancer initiation and progression through mutations caused by DNA damage, and is involved in promotion of the angiogenesis and metastasis of breast cancer (2). Therefore, oxidative stress induces production of angiogenic factors, such as vascular endothelial growth factor (VEGF) and interleukin-8 (IL-8), by cancer cells (3). Besides the metastasis supported by the growth of new blood vessels, oxidative stress may also promote metastasis through the stimulation of migration of cancer cells (2). Migration of a variety of cells, including endothelial cells, keratinocytes and melanocytes, is induced by IL-8, which demonstrates strong chemotactic activity (4-6). In addition, overexpression of IL-8 was detected in breast cancer tissues and correlated with a highly invasive potential and metastatic phenotype of breast cancer cells (7-10). Therefore, the inhibition of IL-8 could be therapeutically important for the inhibition of invasion and metastasis of breast cancer.

The expression of IL-8 is regulated by a variety of transcription factors, including hepatocyte nuclear factor-1, interferon regulatory factor-1, activator protein-1 (AP-1), CCAAT/enhancer binding protein (C/EBP) and nuclear factor-xB (NF-xB), by different stimuli in a cell-specific manner (11,12). AP-1 and NF-xB were identified as major regulators of physiological as well as pathological conditions, including cancer (13,14). Although oxidative stress induced AP-1 activity in tamoxifen-resistant breast tumors (15), and antioxidants suppressed ROS-induced activation of AP-1 and NF-xB in prostate cancer cells (16), the mechanisms of ROS-dependent activation or inhibition of AP-1 and NF-xB in cancer development remain to be elucidated (17,18). Epidemiological studies show that the consumption of food rich in antioxidants is inversely related to cancer risk (19), and experimental studies further demonstrate that dietary...
antioxidants can selectively kill cancer cells in vitro and can inhibit tumor angiogenesis and metastatic growth in vivo (20).

Ganoderma lucidum has been used as a diet therapy in traditional Chinese medicine for several millennia. Although a wide variety of bioactive molecules have been identified in this medicinal mushroom, its anticancer effects are predominantly described with polysaccharides and/or triterpene fractions (21). In addition to modulation of the immune system (22), polysaccharide fractions from *G. lucidum* also demonstrated antioxidant properties (23-25). Antioxidative activity was also identified in triterpene fraction containing ganoderic acid A (26). In the present study, we evaluated the effect of *G. lucidum* on the oxidative stress-induced invasiveness of breast cancer cells. We describe the possible mechanism of the inhibition of oxidative stress-stimulated IL-8 secretion and migration of breast cancer cells by *G. lucidum*.

Materials and methods

Materials. *G. lucidum* extract, containing 13.5% polysaccharides and 6% triterpenes, was obtained from Pharmanex LLC (Provo, UT). This extract was dissolved in sterile water at a concentration of 50 mg/ml and stored at 4°C. Ganoderic acid A, F, and H were purchased from Chromadex (Santa Ana, CA).

Cell culture. Human breast cancer cells, MCF-7, were obtained from ATCC (Manassas, VA) and maintained in Dulbecco's modified Eagle's medium (DMEM) containing penicillin (50 U/ml), streptomycin (50 U/ml), and 10% fetal bovine serum (FBS). Media and supplements were from Invitrogen (Grand Island, NY), FBS was obtained from HyClone (Logan, UT).

Lipid peroxidation assay. MCF-7 cells (5x10⁵) were treated with 5 mM H₂O₂ and *G. lucidum* extract (0-0.5 mg/ml) for 24 h. Lipid peroxidation was performed with malondialdehyde (MDA) and N-methyl-2-phenylindole (NMPI) according to the manufacturer's instructions (BioOxytech MDA-586, OXIS International, Inc., Portland, OR). Amounts of cellular products of lipid peroxidation were measured spectrophotometrically at 586 nm.

Western blot analysis. Whole cell extracts were prepared from MCF-7 cells treated with H₂O₂ (0-5 mM) and *G. lucidum* extract (0-0.5 mg/ml) as previously described (27). Equal amounts of proteins (20 μg/lane) were separated on NuPAGE 4-12% Bis-Tris gel (Invitrogen, Carlsbad, CA) and transferred to a PVDF membrane (Millipore, Bedford, MA). Protein expression was detected with the corresponding primary antibodies: anti-Erk1/2, anti-phospho-Erk1/2 (Cell Signaling, Beverly, MA), anti-c-Jun, anti-c-Fos and anti-β-actin antibody (Santa Cruz Biotechnology, Santa Cruz, CA), respectively. Protein expression was visualized using the ECL Western blotting detection system (Amersham Biosciences, Buckinghamshire, UK).

DNA-binding assay. MCF-7 cells were treated with H₂O₂ (5 mM) and *G. lucidum* extract (0-0.5 mg/ml), nuclear proteins were prepared and DNA-binding assay with ³²P-labeled AP-1 and ³²P-labeled NF-xB was performed as previously described (28). Oligonucleotide probes containing consensus sequence for AP-1 and NF-xB were purchased from Promega (Madison, WI).

DNA transfection and reporter gene assays. MCF-7 cells were transiently transfected with AP-1-Luc or NF-xB-Luc reporter constructs (BD Biosciences, CA, USA) and β-galactosidase expression vector, pCM110, as previously described (28). The cells were treated with *G. lucidum* extract for 24 h, followed by oxidative stress with H₂O₂ for an additional 4 and 6 h. The cell lysates were prepared and β-galactosidase determined as previously described (28). The luciferase activity was determined in samples containing equal units of β-galactosidase in luciferase assay buffer (4 mM EGTA, 15 mM MgSO₄, 25 mM Glycyglycine pH 7.8, 15 mM potassium phosphate pH 7.8, 2 mM ATP, 1 mM DTT) with the luciferin solution (200 μM D-luciferin, 25 mM Glycyglycine pH 7.8, 2 mM DTT) by using Lmax luminometer (Molecular Devices, CA, USA). Data points represent the average ± S.D. of 3-6 independent transfection experiments.

ELISA analysis. MCF-7 cells were treated with H₂O₂ (5 mM) and with *G. lucidum* extract (0-0.5 mg/ml), for 24 h, cell media were collected and the secretion of IL-8 was measured using an IL-8 QuantiKine human immunoassay kit (R&D Systems, Minneapolis, MN), according to the manufacturer’s instructions.

Cell migration assay. Chemotaxis was induced by conditioned media from MCF-7 exposed to oxidative stress and *G. lucidum* extract was assessed and evaluated by modified cell migration protocol (29). Briefly, media from the MCF-7 cells treated with *G. lucidum* and H₂O₂ were collected and concentrated with YM-10 concentrating filtering devices (Millipore, MA, USA). Chemotaxis was assessed after 96 h of incubation as we previously described (29). Data points represent the average ± S.D. of three individual filters within one representative experiment repeated at least twice.

Sample preparation for LC-MS analysis. *G. lucidum*, dissolved in water (50 mg/ml), was extracted for 1 h at room temperature, and filtrated using a 0.45-μm filter. The samples were prepared by diluting 100 μl of extract with 900 μl of 50% methanol containing 1% acetic acid. Oasis HLB lcc extraction cartridges (Waters) were conditioned with 1 ml 100% methanol and equilibrated with 1 ml 50% methanol containing 1% acetic acid. Each sample was loaded and washed with 1 ml 50% methanol containing 1% acetic acid. The samples were eluted with 1 ml 100% methanol acidified with 1% acetic acid and evaporated to dryness in a speed vacuum system. The samples were resuspended in 100 μl of 25% methanol containing 0.1% formic acid for LC-ESI-MS analysis.

LC-ESI-MS. Standards of ganoderic acid A, F and H and the samples of *G. lucidum* were separated on a capillary HPLC system (1100 Series LC, Agilent). After injection the compounds were concentrated on a MicroBore SB-C-18 enrichment column (1x17 mm, Agilent) and washed with 3% acetonitrile; 0.01% TFA at flow rate 20 μl/min for 5 min. The
Figure 1. G. lucidum inhibits oxidative-stress induced activation of Erk1/2. (A) Phosphorylation of Erk1/2 was determined in MCF-7 cells treated with 0-5 mM H_2O_2 for 30 min. Whole cell extracts were prepared, and subjected to Western blot analysis with anti-Erk1/2, anti-phospho-Erk1/2 antibodies as described in Materials and methods. The results are representative of three separate experiments. (B) MCF-7 cells were pretreated with 0-1.0 mg/ml of G. lucidum extract (GL) for 24 h, followed by treatment with 5 mM H_2O_2 for 30 min. Phosphorylation of Erk1/2 was determined as described above. The results are representative of three separate experiments.

enrichment column was then switched into the micro flow path and further separated on C-18 reversed phase ZORBAX 300SB-C18 (0.5x150 mm; Agilent) capillary column coupled with the electrospray ionization (ESI) source of ion trap mass spectrometer (XCT Plus, Agilent). The mobile phases consisted of 0.01% TFA in water (X) and acetonitrile (Y) (0 min: X=97%, Y=3%; 10 min: X=97%, Y=3%; 15 min: X=15%, Y=85%; 50 min: X=75%, Y=25%; 55 min: X=0, Y=100%; 60 min: X=0%, Y=100%; 61 min: X=97%, Y=3%; hold to 71 min) with a flow rate of 4 μl/min. The system was controlled by ChemStation software (Agilent). LC-ESI-MS chromatograms were acquired in positive ion mode under the following conditions: a capillary voltage of 3500 V and an end plate offset of 500 V. The dry temperature was set at 325°C. Dry gas flow was maintained at 5 l/min. Acquisition range was 250-1000 m/z with a 0.2-sec accumulation time and scan speed of 8,100 m/z/sec.

Statistical analysis. Data are presented as means ± SD. Statistical comparison between groups of data was carried out using the Student’s t-test. p<0.005 was considered to be significant.

Results

G. lucidum inhibits oxidative stress-induced activation of Erk1/2 in non-invasive breast cancer cells. We have previously demonstrated that an extract from medicinal mushroom G. lucidum inhibits the migration of highly invasive human breast cancer cells (29). Recent reports demonstrate that cell migration of cardiomyocytes and hepatocytes can be induced by oxidative stress through the activation of extracellular regulated kinases (Erk1/2) (30,31). In order to evaluate if oxidative stress activates Erk1/2 in poorly invasive breast cancer cells, we treated MCF-7 cells with hydrogen peroxide (H_2O_2). As seen in Fig. 1A, H_2O_2 (1-5 mM) markedly increased phosphorylation of Erk1/2 in a dose-dependent manner with maximum levels of pErk1/2 after 30 min of incubation. In agreement with previous reports demonstrating antioxidative properties of G. lucidum (23-25), H_2O_2-induced oxidative stress in MCF-7 cells was also inhibited by G. lucidum, as demonstrated by the inhibition of lipid peroxidation (data not shown). In order to evaluate if this antioxidative effect is mediated through the inhibition of activation of Erk1/2, MCF-7 cells were treated with G. lucidum for 24 h, followed by H_2O_2 incubation for 30 min. As seen in Fig. 1B, G. lucidum markedly suppressed the phosphorylation of Erk1/2 in a dose-response manner. Therefore, G. lucidum possesses antioxidative properties and inhibits activation of Erk1/2 in breast cancer cells.

G. lucidum inhibits oxidative-stress induced activation of AP-1 and NF-xB. Erk1/2 induces activity of transcription factor activator protein-1 (AP-1), which consists of homo- and heterodimers of Jun and Fos protein subfamilies (13). As shown above, oxidative-stress-induced activation of Erk1/2 was abolished by G. lucidum. Therefore, we evaluated the effect of G. lucidum on the expression of AP-1 subunits, c-Jun and c-Fos, in breast cancer cells exposed to oxidative stress. MCF-7 cells were treated with vehicle or G. lucidum for 24 h, followed by treatment with H_2O_2 for 0-24 h. As shown in Fig. 2A, H_2O_2 induced expression of c-Fos in a time-dependent manner with maximum induction after 6 h of H_2O_2 treatment (data for longer exposure not shown), and G. lucidum markedly down-regulated its expression. Although H_2O_2 treatment did not further induce expression of c-Jun in MCF-7 cells, the constitutive expression of c-Jun was also inhibited by G. lucidum (Fig. 2A). In order to examine if the down-regulation of expression of c-Fos and c-Jun by G. lucidum modulates the transcriptional activity of AP-1, MCF-7 cells were transfected with AP-1-Luc reporter gene construct, and treated with G. lucidum and H_2O_2. In agreement with the oxidative stress-induced expression of c-Fos, H_2O_2 also induced AP-1 activity (Fig. 2B). Furthermore, G. lucidum also inhibited the H_2O_2-dependent DNA-binding of AP-1 in gel-shift analysis (data not shown). Since the oxidative stress has been linked to the activation of NF-xB (16,32), and we have previously demonstrated that G. lucidum inhibits constitutively active NF-xB in MDA-MB-231 cells (27), we evaluated the effect of G. lucidum on the oxidative stress-induced NF-xB activity. MCF-7 cells were transfected with NF-xB-Luc reporter gene construct, and treated with G. lucidum and H_2O_2. As shown in Fig. 2C, H_2O_2 induced the activity of NF-xB, whereas treatment with G. lucidum markedly suppressed this activity. In addition, we observed the same effect in the NF-xB DNA-binding assay (data not shown). Therefore, G. lucidum protects against oxidative stress induced activation of AP-1 and NF-xB in breast cancer cells.
G. lucidum suppresses oxidative stress-induced secretion of IL-8. Because the expression of IL-8 is controlled by AP-1 and NF-κB (11,12), which is inhibited by G. lucidum, we hypothesized that G. lucidum will suppress secretion of IL-8 from breast cancer cells exposed to oxidative stress. MCF-7 cells were treated with G. lucidum extract (GL, 0.5 mg/ml) for 24 h, followed by incubation with 5 mM H2O2 for another 24 h. The media were collected and the IL-8 secretion determined as described in Materials and methods. The results are representative of three separate experiments. (B) Migration of MCF-7 cells toward conditioned media from MCF-7 cells treated with G. lucidum extract (GL, 0-0.5 mg/ml) for 24 h, followed by incubation with 5 mM H2O2 for 4, 8 and 24 h was assessed as described in Materials and methods. The results are representative of three separate filters repeated at least twice.
Figure 4. Identification of ganoderic acid A, F, and H in *G. lucidum* extract by microLC-ESI-MS. (A) Extracted ion chromatogram at m/z 517.3, 571.3, and 573.3 corresponding to ganoderic acid A (GA-A), ganoderic acid F (GA-F) and ganoderic acid H (GA-H) standards (50 ng each). (B) Extracted ion chromatogram at m/z 517.3 in *G. lucidum*. (C) Extracted ion chromatogram at m/z 573.3 in *G. lucidum*. (D) Extracted ion chromatogram at m/z 571.3 in *G. lucidum*. (E) MS spectrum of extracted peak corresponding to GA-A standard. (F) MS spectrum of extracted peak corresponding to GA-H standard. (G) MS spectrum of extracted peak corresponding to GA-F standard.
shown in Fig. 3B, conditioned media from H₂O₂-treated cells induced migration of MCF-7 cells in a time-response manner, whereas pre-treatment with G. lucidum inhibits oxidative stress-induced migration in a dose-response manner. These collective results suggest that G. lucidum suppressed oxidative stress-induced secretion of IL-8 resulting in the inhibition of oxidative stress-induced migration of breast cancer cells.

G. lucidum contains ganoderic acids A, F and H. The antioxidant properties of G. lucidum are generally attributed to polysaccharides and triterpenes (23-26). However, the amount of biologically active compounds in G. lucidum extract may vary and depends on the strain of G. lucidum, place of production, cultivation conditions, and extraction procedures (34). Although the G. lucidum used in our study contained 6% of triterpenes and 13.5% of polysaccharides, further analysis is necessary for the standardization of this extract. Ganoderic acid A was previously identified in the G. lucidum triterpene fraction with antioxidant properties (26). Therefore, we used commercially available isolated ganoderic acids A, F and H for the standardization of G. lucidum extract by microLC-ESI-MS analysis. Fig. 4 shows the extracted ion chromatogram of standard mixture corresponding to the protonated ions of ganoderic acid A, F, and H. Major peaks with ions at m/z 517.3, 571.3, and 573.3 corresponding to ganoderic acid A (GA-A), ganoderic acid F (GA-F) and ganoderic acid H (GA-H) were observed at retention times of 45.0, 50.5, and 46.1 min, respectively (Fig. 4A and E-G). G. lucidum extract after solid phase extraction (corresponding to 250 μg of dry powder) was analyzed in the same way. Extracted ion chromatogram at m/z 517.3 showed several major chromatographic peaks with retention times between 37 and 52 min (Fig. 4B) indicating the presence of multiple compounds with that particular m/z. Ganoderic acid A was identified, however, by comparison of corresponding retention time of standard at 45.0 min (Fig. 4A). Extracted ion chromatogram at m/z 571.3 (Fig. 4D) and m/z 573.3 (Fig. 4C) revealed major single peaks at retention times of 50.5, and 46.1 min, respectively, indicating the presence of ganoderic acid F and ganoderic acid H. By comparison of corresponding peak intensities in sample to peak intensities of standards in amounts of 5, 50 and 500 ng we estimated concentrations of GA-A, GA-F, and GA-H at 1.8, 0.5, and 3.0 mg/1 g dry powder, respectively. In summary, the analysis of specific ganoderic acids by LC-ESI-MS is a useful tool for the characterization and standardization of G. lucidum.

Discussion

Epidemiological and experimental studies suggest that some dietary antioxidants may have preventive and/or therapeutic effects against cancer. G. lucidum is a popular medicinal mushroom, which has been used for the treatment of a variety of diseases in traditional Chinese medicine. In addition to their anticancer effects, polysaccharides and triterpenes extracted from G. lucidum also exhibited antioxidative activity (23-26). In the present study, we demonstrate that G. lucidum suppressed oxidative stress-induced invasiveness of breast cancer cells. Therefore, G. lucidum inhibits oxidative stress-induced phosphorylation of Erk1/2, followed by the inhibition of transcriptional activity of AP-1 and NF-xB, leading to the suppression of secretion of IL-8, and finally resulting in the inhibition of migration of breast cancer cells.

We show that oxidative stress, mediated through H₂O₂, stimulated Erk1/2 phosphorylation (activation) in poorly invasive breast cancer cells. Furthermore, we show that G. lucidum inhibits H₂O₂-induced phosphorylation of Erk1/2. However, induction of Erk1/2 activity by G. lucidum polysaccharide extract was demonstrated by Hsu et al (35) in macrophages, and associated with the up-regulation of expression of inflammatory cytokine IL-1. Cheung et al (36) also demonstrated Erk1/2 activation by G. lucidum polysaccharide extract in PC12 neuron cells, which was linked to the neuronal differentiation. Interestingly, Li et al (37) showed the activation of Erk1/2 by triterpene, ganoderic acid X isolated from G. lucidum. This activation of Erk1/2 was associated with the inhibition of topoisomerase activity and induction of apoptosis of hepatoma cells (37). Our data, demonstrating the opposite effect, inhibition of Erk1/2 activity by G. lucidum, can be explained by the effect on different cell lines and/or modulating the different signaling pathways in different environments. In addition, oxidative stress (H₂O₂) stimulates Erk1/2 activation (30,38), and we and others have described the antioxidative effect of G. lucidum extracts containing polysaccharides, triterpenes or both (23-26). Finally, we have recently demonstrated that G. lucidum suppresses constitutively active Erk1/2 in prostate cancer cells (39).

Here, we also demonstrate that G. lucidum suppressed oxidative stress-induced activation of downstream targets of Erk1/2, transcription factors AP-1 and NF-xB. The central molecule in the inhibition of AP-1 and NF-xB activity is c-Fos, whose oxidative stress-induced expression was down-regulated by G. lucidum. Therefore, AP-1 activity can be regulated directly through its subunit c-Fos or indirectly through NF-xB, which regulates expression of c-Fos (40). Although we have recently demonstrated the inhibition of constitutively active AP-1 and NF-xB by G. lucidum in cancer cells (27,39), other reports described activation as well as inhibition of NF-xB in different systems. Therefore, Kuo et al (41) recently reported that mycelia from G. lucidum activated NF-xB in macrophages, and Lin et al (42) demonstrated the induction of NF-xB in dendritic cells by G. lucidum polysaccharides. On the other hand, Zhang et al (43) showed inhibition of NF-xB by G. lucidum polysaccharides in alloxan-induced pancreatic islets. In agreement with our data, Zhao et al (44) recently demonstrated that G. lucidum triterpenes protect against hypoxia/reoxygenation injury through the suppression of nuclear translocation of NF-xB.

In the present study, we also demonstrate that G. lucidum suppressed oxidative stress-induced secretion of IL-8 from breast cancer cells. Our results are in agreement with a recent report by Lai et al (45) demonstrating down-regulation of IL-8 expression by G. lucidum in tubular epithelial cells exposed to oxidative damage. At the functional level, we found that oxidative stress induced the migratory potential of poorly invasive breast cancer cells MCF-7. This effect is mediated by the secreted IL-8, whose expression is stimulated by H₂O₂ through Erk1/2 signaling including the activation of AP-1 and NF-xB (46,47). The stimulation of migration with a low concentration of H₂O₂ (0.1-5 μM) was recently demonstrated in melanoma and prostate cancer cells (48,49). The low con-
centration of H2O2 is mediated through thioredoxin signaling in melanoma cells (48), and through the activation of heparin affin regulatory peptide (HARP) in prostate cancer cells (49). However, we used a high concentration of H2O2 (5 mM) for the stimulation of Erk1/2 signaling in MCF-7 cells. Thus, our data are in agreement with previous reports demonstrating the induction of Erk1/2 activity by 1-10 mM H2O2 (30,38). Furthermore, Erk-dependent pathway was recently linked to the stimulation of migration in MCF-7 cells (50). Finally, we show that oxidative stress-induced and IL-8-dependent cell migration is suppressed by G. lucidum. We have also previously demonstrated the inhibition of unstimulated migration of highly invasive breast and prostate cancer cells through the suppression of constitutive secretion of urokinase plasminogen activator (uPA) (28).

The major obstacle for the acceptance of the extracts from natural products in Western medicine is their complexity and absent standardization of biologically active compounds. This complexity can also bring significant advantages as is the reduction of cytotoxicity of certain components and/or modulation of unrelated signaling by different compounds, which can possess a synergistic effect (51). In addition, the standardization of G. lucidum is crucial for its characterization since the composition and amount of biologically active triterpenes and polysaccharides depend on the place of production, cultivation conditions, extraction procedure and the strain of G. lucidum (36). Furthermore, we recently demonstrated that some extracts of G. lucidum proved to have strong activity against cancer cells, whereas other extracts did not show any effect (52). Therefore, we evaluated the G. lucidum used in this and our previous studies for the presence and amount of three different ganoderic acids. Since this extract demonstrates strong anti-cancer activity and amount of three different ganoderic acids. Since this extract demonstrates strong anti-cancer activity in vitro, this evaluation could be helpful for the standardization of other G. lucidum extracts.

In conclusion, oxidative stress markedly stimulated the migratory potential of poorly invasive breast cancer cells MCF-7 through the activation of Erk signaling resulting in the secretion of pro-migratory chemokine IL-8. However, G. lucidum inhibited this signaling and suppressed oxidative stress-induced migration of breast cancer cells. These results implicate G. lucidum as a potential chemopreventive and/or therapeutic natural product, which may stop invasion and metastasis of breast cancer. Further studies are necessary to confirm this preventative/therapeutic potential of G. lucidum extract in vivo.

Acknowledgements

This work was supported by a grant from the Methodist Health Foundation to D.S. We also thank Veronika Slivova for her technical assistance, and Pharmanex LLC for providing us with the G. lucidum extract.

References

44. Zhao HB, Wang SZ, He OH, Yuan L, Chen AF and Lin ZB: Ganoderma total sterol (GS) and GS1 protect rat cerebral cortical neurons from hypoxia/reoxygenation injury. Life Sci 76: 1027-1037, 2005.

