Hedgehog signaling pathway and gastrointestinal stem cell signaling network (Review)

YURIKO KATOH1 and MASARU KATOH2

1M&M Medical BioInformatics, Hongo 113-0033; 2Genetics and Cell Biology Section, National Cancer Center Research Institute, Tokyo 104-0045, Japan

Received September 19, 2006; Accepted October 10, 2006

Abstract. Hedgehog, BMP/TGFβ, FGF, WNT and Notch signaling pathways constitute the stem cell signaling network, which plays a key role in a variety of processes, such as embryogenesis, maintenance of adult tissue homeostasis, tissue repair during chronic persistent inflammation, and carcinogenesis. Sonic hedgehog (SHH), Indian hedgehog (IHH) and Desert hedgehog (DHH) bind to PTCH1/PTCH or PTCH2 receptor to release Smoothened (SMO) signal transducer from Patched-dependent suppression. SMO then activates STK36 serine/threonine kinase to stabilize GLI family members and to phosphorylate SUFU for nuclear accumulation of GLI. Hedgehog signaling activation leads to GLI-dependent transcriptional activation of target genes, such as GLI1, PTCH1, CCND2, FOXL1, JAG2 and SFRP1. GLI1-dependent positive feedback loop combined with PTCH1-dependent negative feedback loop gives rise to transient proliferation of Hedgehog target cells. Iguana homologs (DZIP1 and DZIP1L) and Costal-2 homologs (KIF7 and KIF27) are identified by comparative integromics. SHH-dependent parietal cell proliferation is implicated in gastric mucosal repair during chronic Helicobacter pylori infection. BMP-RUNX3 signaling induces IHH expression in surface differentiated epithelial cells of stomach and intestine. Hedgehog signals from epithelial cells then induces FOXL1-mediated BMP4 upregulation in mesenchymal cells. Hedgehog signaling is frequently activated in esophageal cancer, gastric cancer and pancreatic cancer due to transcriptional upregulation of Hedgehog ligands and epigenetic silencing of HHIP1/HHIP gene, encoding the Hedgehog inhibitor. However, Hedgehog signaling is rarely activated in colorectal cancer due to negative regulation by the canonical WNT signaling pathway. Hedgehog signaling molecules or targets, such as SHH, IHH, HHIP1, PTCH1 and GLI1, are applied as biomarkers for cancer diagnostics, prognostics and therapeutics. Small-molecule inhibitors for SMO or STK36 are suitable to be used for treatment of Hedgehog-dependent cancer. Contents

1. Overview of Hedgehog signaling pathway

Hedgehog signaling plays a key role in a variety of processes, such as embryogenesis, maintenance of adult tissue homeostasis, tissue repair during chronic persistent inflammation, and carcinogenesis (1-6). Hedgehog family ligands, Sonic hedgehog (SHH), Indian hedgehog (IHH) and Desert hedgehog (DHH), undergo autoprocessing and lipid modification to generate mature peptides (7-9). Hedgehog acyltransferase (HHAT) is one of Hedgehog modifiers (10). Hedgehog family proteins with lipid modification are released from producing cells by Dispatched homologs (11,12).

In the absence of Hedgehog signaling, Patched family receptors (PTCH1/PTCH and PTCH2) inhibit the Smoothened (SMO) signal transducer from Patched-dependent suppression. SMO then activates STK36 serine/threonine kinase to stabilize GLI family members and to phosphorylate SUFU for nuclear accumulation of GLI. Hedgehog signaling pathway and gastrointestinal stem cell signaling network (Review)

YURIKO KATOH1 and MASARU KATOH 2

1M&M Medical BioInformatics, Hongo 113-0033; 2Genetics and Cell Biology Section, National Cancer Center Research Institute, Tokyo 104-0045, Japan

Received September 19, 2006; Accepted October 10, 2006

Abstract. Hedgehog, BMP/TGFβ, FGF, WNT and Notch signaling pathways constitute the stem cell signaling network, which plays a key role in a variety of processes, such as embryogenesis, maintenance of adult tissue homeostasis, tissue repair during chronic persistent inflammation, and carcinogenesis. Sonic hedgehog (SHH), Indian hedgehog (IHH) and Desert hedgehog (DHH) bind to PTCH1/PTCH or PTCH2 receptor to release Smoothened (SMO) signal transducer from Patched-dependent suppression. SMO then activates STK36 serine/threonine kinase to stabilize GLI family members and to phosphorylate SUFU for nuclear accumulation of GLI. Hedgehog signaling activation leads to GLI-dependent transcriptional activation of target genes, such as GLI1, PTCH1, CCND2, FOXL1, JAG2 and SFRP1. GLI1-dependent positive feedback loop combined with PTCH1-dependent negative feedback loop gives rise to transient proliferation of Hedgehog target cells. Iguana homologs (DZIP1 and DZIP1L) and Costal-2 homologs (KIF7 and KIF27) are identified by comparative integromics. SHH-dependent parietal cell proliferation is implicated in gastric mucosal repair during chronic Helicobacter pylori infection. BMP-RUNX3 signaling induces IHH expression in surface differentiated epithelial cells of stomach and intestine. Hedgehog signals from epithelial cells then induces FOXL1-mediated BMP4 upregulation in mesenchymal cells. Hedgehog signaling is frequently activated in esophageal cancer, gastric cancer and pancreatic cancer due to transcriptional upregulation of Hedgehog ligands and epigenetic silencing of HHIP1/HHIP gene, encoding the Hedgehog inhibitor. However, Hedgehog signaling is rarely activated in colorectal cancer due to negative regulation by the canonical WNT signaling pathway. Hedgehog signaling molecules or targets, such as SHH, IHH, HHIP1, PTCH1 and GLI1, are applied as biomarkers for cancer diagnostics, prognostics and therapeutics. Small-molecule inhibitors for SMO or STK36 are suitable to be used for treatment of Hedgehog-dependent cancer.

Contents

1. Overview of Hedgehog signaling pathway

Hedgehog signaling plays a key role in a variety of processes, such as embryogenesis, maintenance of adult tissue homeostasis, tissue repair during chronic persistent inflammation, and carcinogenesis (1-6). Hedgehog family ligands, Sonic hedgehog (SHH), Indian hedgehog (IHH) and Desert hedgehog (DHH), undergo autoprocessing and lipid modification to generate mature peptides (7-9). Hedgehog acyltransferase (HHAT) is one of Hedgehog modifiers (10). Hedgehog family proteins with lipid modification are released from producing cells by Dispatched homologs (11,12).

In the absence of Hedgehog signaling, Patched family receptors (PTCH1/PTCH and PTCH2) inhibit the Smoothened (SMO) signal transducer (1-6,13-15). SMO inactivation leads to formation of the cytoplasmic GLI degradation complex, in which GLI family members (GLI1, GLI2 and GLI3) are phosphorylated by casein kinase I (CKI), glycogen synthase kinase-3ß (GSK3ß) and protein kinase A (PKA) (16,17). Phosphorylated GLI is recognized by FBXW1/ßTRCP1 and FBXW1/ßTRCP2 (18-20) for ubiquitination, and ubiquitinated GLI is partially degraded to release its intact N-terminal half functioning as transcriptional repressor.

Hedgehog-binding to Patched family receptors releases the SMO signal transducer from Patched-dependent suppression. SMO then activates STK36 serine/threonine kinase to inhibit the assembly of GLI degradation complex for the stabilization of full-length GLI (21). Activated STK36 also phosphorylates SUFU to promote the nuclear accumulation of full-length GLI (22). Hedgehog signaling activation leads to GLI-dependent transcriptional activation of target genes, such as GLI1, PTCH1, CCND2, FOXL1 and JAG2 (14,23-25) (Fig. 1A).
Hedgehog-dependent upregulation of the GLI1 transcription factor is a positive feedback mechanism of Hedgehog signaling. Hedgehog-dependent upregulation of PTCH1 is a negative feedback mechanism of Hedgehog signaling. In addition, Hedgehog-dependent upregulation of CCND2 and FOXM1 leads to proliferation of target cells through cell cycle progression. Therefore, GLI1-dependent positive feedback loop combined with PTCH1-dependent negative feedback loop gives rise to the transient proliferation of Hedgehog target cells.

Novel components of the Hedgehog signaling pathway have been identified based on comparative integromics. Zinc-finger and coiled-coil domain protein DZIP1 is the human ortholog of zebrafish Iguana regulating the intracellular distribution of GLI (26,27), and DZIP1L is the paralog of DZIP1 (Katoh Y, unpublished data).

Drosophila Costal-2 (Cos2) interacts with Drosophila homologs of human SMO, GLI, STK36 and microtubule. Kinesin family members KIF27 and KIF7 are human homologs of Drosophila Cos2 (28,29).

2. Hedgehog signaling network in gastrointestinal tract

SHH and PTCH1 are expressed in the parietal cell-lineage of the stomach (30). Chronic persistent infection with Helicobacter pylori leads to chronic atrophic gastritis and gastric cancer (31,32). SHH-dependent parietal cell proliferation is implicated in the gastric mucosal repair during chronic Helicobacter pylori infection (6).

IHH and RUNX3 are expressed in the differentiated cells around the surface of the stomach and intestine (33,34). Hedgehog signals from epithelial cells then induces FOXL1-mediated BMP4 upregulation in mesenchymal cells. BMP2 and BMP4, secreted from infiltrating inflammatory cells, activate BMP signaling in the surface epithelial cells in the gastric mucosa with Helicobacter pylori infection (35). RUNX family members interact with the BMP signaling SMAD protein complex to upregulate target genes (36). BMP-RUNX3 signaling induces IHH expression in the surface differentiated cells of the stomach and intestine (Fig. 2A).

WNT signaling plays a key role for the maintenance of intestinal epithelium (37-42). WNT signaling is activated in the progenitor (transit-amplifying) region around the bottom of intestinal crypt, while Hedgehog signaling in the differentiated region around the surface of intestinal villi (33). Hedgehog signaling inhibits the canonical WNT signaling and proliferation in intestinal epithelial cells (43). Hedgehog-dependent induction of WNT antagonist SFRP1 in mesenchymal cells partially explains the separation of the Hedgehog signaling activation domain from the WNT signaling activation domain (44).

Hedgehog signaling promotes epithelial proliferation in the esophagus, stomach and pancreas, but inhibits proliferation in the intestine due to its negative effects on the canonical WNT signaling pathway.

3. Oncogenic Hedgehog signaling activation

Carcinogenesis is a multi-stage disorder influenced by genetic predisposition, environmental factors, and aging (45). Transcriptional upregulation of genes encoding ligands for the onco-development pathways occurs during chronic inflammation...
to repair the damaged tissues. Epigenetic silencing of genes encoding negative regulators of the onco-developmental pathways occurs during chronic persistent inflammation and/or aging to promote the repair process. Mutation, amplification or loss of genes encoding the onco-developmental signaling molecules then occurs to advance the multi-stage carcinogenesis.

HHIP1/HHIP gene encodes the Hedgehog-interacting protein functioning as Hedgehog inhibitor (46,47). **HHIP1** is up-regulated in basal cell carcinoma due to the negative feedback mechanism (48). On the other hand, **HHIP1** is down-regulated in a variety of tumors, such as gastric cancer, pancreatic cancer, colorectal cancer, and lung cancer (49). **HHIP1** down-regulation in pancreatic cancer is due to epigenetic CpG hypermethylation (50).

PTCH1 gene is mutated in the basal cell nevus syndrome, characterized by developmental abnormalities and basal cell carcinomas (13). **PTCH1** gene is also mutated in sporadic basal cell carcinoma. Loss-of-function mutation of **PTCH1** gene leads to carcinogenesis through constitutive Hedgehog signaling activation.

SMO gene is mutated in 10-20% of sporadic basal cell carcinomas (15). Gain-of-function mutation of **SMO** gene results in ligand-independent activation of the Hedgehog signaling pathway.

SUFU gene encodes a PEST domain protein implicated in the nuclear export of GLI family transcription factors (22). A subset of children with medulloblastoma carry germline and somatic mutations in **SUFU** gene with loss of heterozygosity of the wild-type **SUFU** allele.

GLI1, **GLI2**, and **GLI3** genes encode GLI family transcription factors functioning as Hedgehog effectors. **GLI1** gene is amplified in malignant glioma (16), **GLI2** gene in oral squamous cell carcinoma (51), and **GLI3** gene in alveolar rhabdomyosarcoma (52). Overexpression of **GLI** family members due to gene amplification leads to constitutive activation of the Hedgehog signaling pathway.

SMO and **GLI** family genes encoding a positive regulator of Hedgehog signaling pathway are proto-oncogenes, while **HHIP1**, **PTCH1** and **SUFU** genes encoding a negative regulator of Hedgehog signaling pathway are tumor suppressor genes (Fig. 1B).

4. Hedgehog signaling in gastrointestinal cancer

SHH and **IHH** were expressed in all of the six esophageal cancer cell lines, and **PTCH1** and **GLI1** in four of six esophageal cancer cell lines (53). **SHH** was expressed in primary esophageal cancer, and **SHH** gene was amplified in some of the cases. Elevated expression of Hedgehog target genes occurred in 14 out of 22 primary esophageal cancer (54).

SHH, **IHH**, **PTCH1** and **GLI1** were expressed in all of the six human gastric cancer cell lines (53). **SHH**, **PTCH1** and **GLI1** were expressed in 63 of 99 primary gastric cancer (55), while **HHIP1** was down-regulated in nine of ten primary gastric cancer (49).

SHH, **IHH**, **PTCH1** and **GLI1** were expressed in five of six human pancreatic cancer cell lines (53). **IHH** is significantly upregulated in primary pancreatic cancer (56). CpG hyper-methylation of **HHIP1** promoter was detected in 13 out of 17 pancreatic cancer cell lines, and in 35 out of 75 primary pancreatic cancer (50).

SHH and **IHH** were expressed in all of the 11 human colorectal cancer cell lines (53), and **HHIP1** was down-regulated in 16 of 20 primary colorectal cancer (49). Despite **SHH/IHH** expression and **HHIP1** down-regulation, **PTCH1** is not expressed in colorectal cancer (53).

Hedgehog signaling is frequently activated in esophageal, gastric and pancreatic cancer due to transcriptional upregulation of Hedgehog ligands and epigenetic silencing of the **HHIP1** gene. However, Hedgehog signaling is rarely activated in colorectal cancer due to negative regulation by the canonical WNT signaling pathway (Fig. 2B).
5. Perspectives

Hedgehog and WNT counteract in the intestinal epithelium. Hedgehog inhibits WNT signaling in intestinal stem or progenitor cells partly due to SFRP1 induction in mesenchymal cells (Fig. 2A); however the mechanism of WNT-dependent Hedgehog signaling inhibition remains unclear. Expression profile, epigenetic change, and genetic alterations of Hedgehog signaling-related genes and phosphorylation status of Hedgehog signaling molecules should be investigated to explain why Hedgehog signaling is frequently inactivated in colorectal cancer.

High-throughput technologies and bioinformatics supervised by human intelligence are the driving forces for the pharmacogenomics and pharmacogenetics in the post-genome era (45). Because Hedgehog, BMP/TGFβ, FGF, WNT and Notch signaling pathways constitute the stem cell signaling network (Fig. 2A), stem cell signaling molecules are applied as biomarkers or biomarker sets for clinical oncology. Hedgehog signaling molecules or targets, such as SHH, IHH, HHIP1, PTCH1 and GLI1, are applied as biomarkers for cancer diagnostics, prognostics and therapeutics.

Small-molecule inhibitors for seven-transmembrane proteins and protein kinases are promising drugs in the post-genome era (60). KADD-cyclopamine, SANT1-4 and Cur61414 have been developed as small-molecule SMO inhibitors (57-59). Because STK36 serine/threonine kinase functions as a positive regulator of the Hedgehog signaling pathway, small-molecule STK36 inhibitors could also be developed in the future.

References