MAP kinase subtypes and Akt regulate diosgenin-induced apoptosis of rheumatoid synovial cells in association with COX-2 expression and prostanoid production

BERTRAND LIAGRE1, DAVID Y. LEGER1, PASCALE VERGNE-SALLE2 and JEAN LOUIS BENEYTOUT1

1Laboratoire de Biochimie, UPRES EA 4021, Faculté de Pharmacie, 87025 Limoges Cedex; 2Service de Rhumatologie et Thérapeutique, CHRU Dupuytren, 87042 Limoges Cedex, France

Received May 26, 2006; Accepted July 11, 2006

Abstract. In the present study, we investigated the signalling pathways involved in diosgenin-induced apoptosis in human rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS) in vitro with particular interest on Akt and MAPKs activation in relation to arachidonic acid metabolism via COX-2 pathway. MAPK activation was measured by ELISA quantification in diosgenin-treated human RA FLS. Expression of Akt and phospho-Akt was analyzed by Western blot analysis. Nuclear factor-xB (NF-xB) translocation was evaluated by electromobility shift assay. The prostanoid production (COX-2 activity) was measured by quantitative ELISA. Diosgenin-induced apoptosis in the presence of MAPK or Akt inhibitors was detected by a quantitative determination of DNA fragmentation. Treatment of human RA FLS with 40 μM diosgenin caused an activation of p38 and JNK and an inhibition of ERK phosphorylation. Akt and NF-xB are potentially required for diosgenin-induced apoptosis in human RA FLS because 40 μM diosgenin abrogated Akt phosphorylation which correlated with an inhibition of NF-xB nuclear translocation. SB203580 and SP600125 (p38 and JNK inhibitors) reduced diosgenin-induced DNA fragmentation whereas U0126 and LY294002 (MEK and PI3 kinase/Akt inhibitors) caused an amplification of proapoptotic effect of diosgenin. Diosgenin increased COX-2 activity resulting in PGE2 and 6-keto-PGF1α production in human RA FLS. All MAPK inhibitors markedly reduced diosgenin-induced PGE2 and 6-keto-PGF1α synthesis except for SP600125 on 6-keto-PGF1α production. These results provide, for the first time, strong evidence that a combined association implicating a MEK inhibitor (U0126) and diosgenin is the most effective in inducing very strong apoptosis with down-regulation of COX-2 expression and activity in human RA FLS.

Introduction

Apoptosis is considered to be one of the mechanisms regulating autoimmune diseases such as rheumatoid arthritis (RA) (1). In the pathogenesis of RA, it is thought that the normal balance between proliferation and apoptosis of synovial fibroblasts is lost, leading to hyperplasia of these fibroblasts (2). Activated synovial cells cause growth of synovium in the articular cavity along with angiogenesis, invade the adjacent bone, promote production of inflammatory mediators by inflammatory cells, and cause cartilage and bone destruction (3). Therefore, it has been shown that stimulation of apoptosis in synovial fibroblasts might be useful for the treatment of RA (4,5).

Mitogen-activated protein kinases (MAPKs) are key proteins regulating the apoptotic process. MAPKs are proline-directed protein kinases that mediate the effects of numerous extracellular stimuli in a wide array of biological processes, such as cellular proliferation, differentiation and death. Three groups of mammalian MAPKs have been studied in detail: extracellular signal-regulated kinases (ERKs) (6), c-jun NH2-terminal kinases (JNKs) and p38 MAPKs (7). MAPKs are activated by upstream dual-specificity kinases through phosphorylation on both threonine and tyrosine residues at the Thr-Xaa-Tyr dual phosphorylation motif (8,9). All three MAPK families have been implicated in RA (10).

Another key protein that modulates the apoptotic response is Akt. Akt kinase, a downstream target of PI3 kinase/Akt inhibitors, is a downstream target of PI3 kinase, is a key serine/threonine kinase in growth factor-mediated inhibition of apoptosis (11). Molecular studies have revealed that Akt activation inhibits apoptosis in rheumatoid synovial cells (12,13).
Recently, we have shown for the first time that a plant steroid, diosgenin, inhibited the growth of human RA fibroblast-like synoviocytes (FLS) with apoptosis induction characterized by a loss of mitochondrial membrane potential, caspase-3 activation and DNA fragmentation (14). Furthermore, the proapoptotic effect of diosgenin was associated with overexpression of cyclooxygenase-2 (COX-2) correlated with overproduction of endogenous prostaglandin E₂ (PGE₂) (14).

The aim of this study was to investigate the signalling pathways involved in diosgenin-induced apoptosis in human RA FLS in vitro. We particularly focused our attention on Akt and MAPK activation in relation to arachidonic acid metabolism via the COX-2 pathway in apoptotic conditions. Our results demonstrate diosgenin-induced apoptosis through a combined activation of p38 and JNK with an inhibition of ERK and Akt pathways. Furthermore, pre-treatment with a MEK inhibitor amplified diosgenin-induced apoptosis with a significant decrease in COX-2 expression and prostanoid production in human RA FLS.

Materials and methods

Materials. Dulbecco’s modified Eagle’s medium (DMEM), fetal calf serum (FCS) and penicillin-streptomycin were supplied by Gibco-BRL (Cergy Pontoise, France). Collagenase was obtained from Worthington Biochemical Corporation (Halls Mill Road, Freehold, NJ, USA). Dispase, hyaluronidase, DNase I, diosgenin and human β-actin antibody were purchased from Sigma (Saint Quentin Fallavier, France). Recombinant human IL-1β, human phospho-ERK1/ERK2, phospho-JNK and phospho-p38α DuoSet IC ELISA and 15-d-PGJ2 immuno-assay were purchased from R&D Systems (Lille, France). Human COX-2, Akt and phospho-Akt antibodies were purchased from Santa Cruz Biotechnology (Tebu-Bio, Le Perray en Yvelines, France). SB203580, SP600125, U0126 and LY294002 were purchased from Calbiochem (VWR, Fontenay-sous-Bois, France). ELISA kits for prostanooids and human mPGES-1 antibody were purchased from Cayman Chemical (Spibio, Massy, France). Cell death detection ELISAPLUS and DIG Gel Shift Kit were supplied by Roche Diagnostics (Meylan, France).

Preparation of human synovial cells. RA synoviocytes were isolated from fresh synovial biopsies obtained from six RA patients undergoing hip arthroplasty. All patients fulfilled the 1987 American Rheumatism Association criteria for RA (15). The mean age of the patients was 63.8±2.9 years (range 60-67 years). The mean disease duration was 8.3±2.8 years. At the time of surgery, the disease activity score (DAS 28) was greater than 3.2. These activities were approved by local institutional review boards, and all subjects gave written informed consent. Synovia were minced and digested with 0.15 mg/ml DNase I for 3-4 h at 37˚C as previously described (14). After centrifugation, cells were resuspended in DMEM supplemented with 10% FCS, 4.5 g/l D-glucose, 25 mM HEPES, 100 U/ml penicillin and 100 μg/ml streptomycin (Gibco-BRL) in a humidified atmosphere containing 5% (v/v) CO₂ at 37˚C.

For all experiments, RA FLS were allowed to adhere and grow for 48 h in culture medium prior to exposure to 40 μM diosgenin because we had previously demonstrated that this concentration induced strong apoptosis of human RA FLS (14). A stock solution of 10⁻² M diosgenin was prepared in ethanol and diluted in culture medium to give a final concentration of 40 μM. The same amount of ethanol (<0.5%) was added to control cells. After treatment, culture medium was not changed during the entire study.

Quantification of human phospho-ERK1/ERK2, phospho-JNK and phospho-p38α. Human RA FLS were grown in 25 cm² tissue culture flasks for 48 h before treatment. After washing with PBS (pH 7.4), cells were incubated at 37˚C with 40 μM diosgenin for 20 min, 1 h, 6 h and 24 h or with interleukin (IL)-1β (1 ng/ml) alone for 20 min as a positive control. After treatment, 10⁶ cells were homogenized in lysis buffer in accordance with the manufacturer’s protocol (R&D Systems). Before assay, one plate was coated with 100 μl per well of capture antibody (4 μg/ml) overnight at room temperature. The plate was washed three times with 400 μl wash buffer and blocked by adding 300 μl blocking buffer to each well for 1-2 h at room temperature. Before use, cell lysates were centrifuged at 2000 g for 5 min and supernatants were diluted 6-fold. Phospho-ERK1/ERK2, phospho-JNK or phospho-p38α detection was performed according to the manufacturer’s instructions (R&D Systems) as previously described (17).

Effect of diosgenin on Akt phosphorylation. Human RA FLS were cultured in 75 cm² tissue culture flasks for 48 h before treatment. After 40 μM diosgenin treatment for 24 h, adherent cells were trypsinized and Western blot analysis was performed as previously described (18) using Akt, phospho-Akt (Thr 308) (Tebu-Bio) and β-actin antibodies (Sigma) and secondary antibodies conjugated with peroxidase (Dako). Blots were visualized using enhanced chemiluminescence reagents (Amersham Biosciences) and immediately exposed to X-ray film.

NF-κB nuclear translocation. NF-κB nuclear translocation was evaluated by electromobility shift assay (EMSA). Human RA FLS were grown in 75 cm² tissue culture flasks for 48 h
before treatment. After washing with PBS (pH 7.4), cells were incubated at 37°C with or without 40 μM diosgenin for 24 h. EMSA experiments were performed using DIG Gel Shift Kit (Roche Diagnostics). Briefly, cells were harvested, washed in cold PBS and resuspended in lysis buffer (10 mM HEPES pH 7.9, 1.5 mM MgCl₂, 10 mM KCl, 0.5 mM dithiothreitol. 0.2 mM PMSF, protease inhibitors Complete™ Mini, 0.5% Nonidet P-40). Nuclei were pelleted (2000 g, 10 min at 4°C) and resuspended in nuclear extraction buffer (20 mM HEPES pH 7.9, 420 mM NaCl, 1.5 mM MgCl₂, 10 mM KCl, 15% glycerol, 0.2 mM EDTA, 0.5 mM dithiothreitol, 0.2 mM PMSF, protease inhibitors Complete™ Mini). Lysates were clarified by centrifugation (13000 g, 10 min at 4°C) and supernatants were collected. The protein level was determined by the Bradford method and 10 μg nuclear proteins were incubated with digoxigenin (DIG) labelled NF-κB probe (19) according to the manufacturer's protocol. The samples were loaded on a 5% native polyacrylamide gel, and run in 0.5X TBE buffer. Nuclear proteins and oligonucleotide-protein complexes were then electroblotted to Nylon membranes and incubated with anti-DIG polyclonal sheep antibody conjugated with alkaline phosphatase. Gel mobility shift was visualized after incubation with CSPD® chemiluminescence reagent and exposition to X-ray film.

mRNA and protein COX-2 expression analysis. Total RNA was extracted from cells cultured in 10% FCS medium without or with diosgenin (40 μM) for 24 h by RNeasy Mini Kit (Qiagen, Courtaboeuf, France) according to the manufacturer's instructions. For other conditions, cells were pre-treated for 2 h with 10 μM SB203580 (p38 inhibitor) or 10 μM SP600125 (JNK inhibitor) or 10 μM U0126 (MEK inhibitor) before addition of 40 μM diosgenin for 24 h. RNA purity and integrity were assessed on the Agilent 2100 bioanalyzer with the RNA 6000 Nano LabChip® reagent set (Agilent Technologies), and quantified spectrophotometrically. Expression of COX-2 gene was determined by a TaqMan low-density array (TLDA) based on an Applied Biosystems 7900HT Micro Fluidic Card (20). We used this technique to screen many genes including cytokines and metalloproteinases but, for this study, we concentrated specifically on COX-2 expression.

cDNA synthesis was performed with the High Capacity cDNA Archive Kit from Applied Biosystems according to the manufacturer's instructions. The TaqMan probe and primer sets for human COX-2 and glyceraldehyde 3-phosphate dehydrogenase (GAPDH) as a reference gene were carefully selected from pre-designed TaqMan Gene Expression Assays (Applied Biosystems). The exact locations and the sequences of the oligonucleotides used can be downloaded from the Applied Biosystems website by selecting the Assays IDs (Hs00153133_m1 for COX-2 and Hs99999905_m1 for GAPDH). We mixed 20 μl of single-stranded cDNA (equivalent to 100 ng of total RNA) with 30 μl of nuclease-free water and 50 μl of TaqMan Universal PCR Master Mix. After, we loaded 100 μl of the sample-specific PCR mixture into 1 sample port, the cards were centrifugated twice for 1 min at 280 g and sealed to prevent well-to-well contamination. The cards were placed in the Micro Fluidic Card Sample Block of an ABI PRISM 7900HT Sequence Detection System (Applied Biosystems). Micro Fluidic Cards were analyzed with RQ documents and the RQ Manager software (SDS 2.2) for automated data analysis. Experiments, carried out in triplicate, were analyzed as 1 relative quantity (RQ) study. Expression values for COX-2 gene were normalized to the concentration of GAPDH which showed the least variation among reference genes in our primary cultured RA FLS model. COX-2 gene expression values were calculated based on the comparative threshold cycle method as previously described (20).

Furthermore, COX-2 and microsomal prostaglandin E synthase-1 (mPGES-1) expressions were realized by Western blot analysis using respectively human COX-2 (Tebu-Bio) and mPGES-1 (Cayman Chemical) antibodies.

Detection of prostanoid production. Human RA FLS were grown in 25 cm² tissue culture flasks for 48 h before treatment. After washing with PBS (pH 7.4), cells were treated for 24 h at 37°C with 40 μM diosgenin in DMEM containing 10% (v/v) FCS in a 5% CO₂ atmosphere. Prostanoid concentration in the medium was measured by ELISA according to the manufacturer's instructions and was normalized with respect to the number of viable cells present in the particular culture at the time of sampling. Other conditions included cells pre-incubated for 2 h with 10 μM SB203580 (p38 inhibitor) or 10 μM SP600125 (JNK inhibitor) or 10 μM U0126 (MEK inhibitor) prior to addition of 40 μM diosgenin for 24 h. These last conditions were tested only for PGE₂ and 6-keto-PGF₁α.

Apoptosis quantification:DNA fragmentation. Human RA FLS were cultured in 6-well culture plates (2x10⁵ cells/well). Cells were treated without or with 40 μM diosgenin alone for 24 h, or pre-incubated for 2 h with 10 μM SB203580 (p38 inhibitor), 10 μM SP600125 (JNK inhibitor), 10 μM U0126 (MEK inhibitor) or 20 μM LY294002 (PI3 kinase/Akt inhibitor) before addition of 40 μM diosgenin for 24 h. Apoptosis was quantified on pooled cells (floating and adherent) using the ‘cell death’ ELISA (Cell Death Detection ELISA®PLUS, Roche Diagnostics). Cytosol extracts were obtained according to the manufacturer's protocol and apoptosis was measured as previously described (14).

Statistical analysis. The median and standard deviation (SD) were calculated using Excel (Microsoft Office, version 98). Statistical analysis of differences was carried out by analysis of variance (ANOVA) using StatView version 5.0 (SAS Institute Inc., Cary, NC). A P-value of <0.05 [Fisher’s protected-least-significant-difference (PLSD) test] was considered to indicate significance.

Results

Activation of p38 and JNK and inhibition of ERK phospho-rylation by diosgenin. It has been reported that JNK/p38 MAPK and ERK play opposite roles in apoptosis induction in such a way that the former promotes apoptosis induction whereas the latter inhibits it. In order to elucidate potentially different actions of the three groups of MAPKs in human RA FLS, we studied diosgenin-triggered MAPK signal transduction cascades in relation to apoptosis induction. We showed that 40 μM diosgenin activated p38 within 1 h in human RA FLS.
(+1.8-fold versus control, P<0.05) with a maximum at 6 h (+2.9-fold versus control, P<0.05) and +2.0-fold at 24 h versus control (P<0.05) (Fig. 1A). Furthermore, but more moderately, JNK phosphorylation increased 6 and 24 h after 40 μM diosgenin treatment (+1.4- and +1.3-fold respectively versus control, P<0.05) (Fig. 1B). In contrast, ERK phosphorylation decreased significantly over time in diosgenin-treated human RA FLS [-1.3-fold at 1 h, -1.5-fold at 6 h and was markedly inactivated at 24 h (-3.3-fold) versus control, P<0.05] (Fig. 1C). IL-1 treatment for 20 min served as a positive control of MAPK activation.

Inhibition of survival factors Akt and NF-κB during diosgenin-induced human RA FLS apoptosis. As diosgenin-induced apoptosis in human RA FLS (14), we examined Akt expression and NF-κB activation patterns in response to diosgenin treatment. We showed that although the expression of Akt remained stable after 40 μM diosgenin treatment for 24 h, Akt activity, reflected by its phosphorylation state, was totally abrogated (Fig. 2A). Furthermore, 40 μM diosgenin-inhibited NF-κB activation at 24 h of treatment (Fig. 2B). These observations, inhibition of NF-κB translocation and phospho-Akt levels, led us to check whether the decrease in expression of these survival factors could be associated with an apoptotic phenomenon. This inhibition of NF-κB binding and phospho-Akt levels was correlated with apoptosis induced by diosgenin in human RA FLS.

Prostanoid production during diosgenin-induced human RA FLS apoptosis. Recently, we showed that diosgenin-induced apoptosis in synovial cells was associated with PGE, over-production. In order to clarify this point, we examined whether
or not the proapoptotic effect of diosgenin was associated with the synthesis of other prostanoids. After 40 μM diosgenin treatment for 24 h, only PGE2 and 6-keto-PGF1α productions were increased (+8.9- and +2-fold respectively versus control, P<0.05) in apoptotic conditions. Diosgenin had no significant effect on PGF2α, PGD2, 15-d-PGJ2 and TxB2 synthesis (Fig. 3).

Implication of MAPK pathway in regulation of COX-2 expression and prostaglandin cascade by diosgenin in apoptotic conditions. Recent studies pointed out that inhibition of COX-2 expression is directly correlated with inhibition of the MAPK cascade in rheumatoid synovial cells and chondrocytes (21-23). Using an inhibitory strategy of MAPK activation, we studied the effect of diosgenin on COX-2 mRNA and protein expression but also on PGE2 and 6-keto-PGF1α production in human RA FLS. As shown in Fig. 4A, under apoptotic conditions, 40 μM diosgenin increased mRNA expression of COX-2 (+14-fold) compared to control cells. In the presence of MAPK inhibitors, pre-treatment with 10 μM SB203580 (p38 inhibitor) for 2 h before addition of diosgenin decreased COX-2 expression by -60% at the mRNA level compared to diosgenin alone. Pre-treatment with 10 μM SP600125 (JNK inhibitor) or U0126 (MEK inhibitor) for 2 h before addition of diosgenin was less effective than SB203580 but also decreased COX-2 mRNA expression by -31% and -18% respectively compared to diosgenin alone (Fig. 4A). As previously described (14), 40 μM diosgenin increased COX-2 protein levels compared to control cells (Fig. 4B). Inhibition of COX-2 protein expression by MAPK inhibitors is shown in Fig. 4B. Pre-treatment by each inhibitor before addition of diosgenin markedly reduced COX-2 protein levels compared to diosgenin alone. mPGES-1 is a newly identified inducible enzyme of the arachidonic acid cascade with a key function in PGE2 synthesis. We examined whether or not mPGES-1 was implicated along with COX-2 in diosgenin-induced PGE2 synthesis. mPGES-1 expression in human RA FLS was not modified in the presence or absence of diosgenin (Fig. 4B). As mentioned above, diosgenin only induced the production of PGE2 and 6-keto-PGF1α compared to other prostanoids. As shown in Fig. 4C, diosgenin-induced PGE2 production was decreased by -64%, and 6-keto-PGF1α levels by -54%, by 10 μM SB203580. Pre-treatment with 10 μM SP600125 also decreased diosgenin-induced PGE2 production by -58% but had no effect on diosgenin-induced 6-keto-PGF1α production. However, the maximal inhibitory effect on diosgenin-induced prostaglandin production was observed using U0126. Indeed, 10 μM U0126 decreased PGE2 and 6-keto-PGF1α levels by -89% and -86% respectively compared to diosgenin alone in human RA FLS (Fig. 4C).

Diosgenin-induced apoptosis in human RA FLS is directly related to MAPK and Akt pathways. MAPKs represent an attractive target for RA treatment because they can regulate cell proliferation and apoptosis. Furthermore, inhibition of Akt activation was demonstrated to induce apoptosis. In the present report, we investigated whether or not p38, JNK, ERK and Akt were implicated in the apoptotic signalling pathway of diosgenin in human RA FLS. We chose to study DNA fragmentation, a final step of apoptosis. Quantitative determination of cytoplasmic histone-associated-DNA-
fragments (mono- and oligonucleosomes) was performed by ELISA. Results showed that DNA fragmentation was reduced in human RA FLS pre-treated with inhibitors of transducing apoptotic factors (p38 and JNK) whereas it was amplified with inhibitors of survival transducers (ERK and Akt) (Fig. 5).

Discussion

It is of great importance to understand the mechanisms of apoptosis in RA, as impaired apoptosis in synovial cells is closely associated with hyperplasia of synovial tissues found in patients with RA (24). Plant steroids have been thoroughly described for their pharmacological properties, including...
induction in human RA FLS. Treatment of cells with 40 μM eludicate their different actions, we studied diosgenin-triggered proteinase production (32). These MAPKs are expressed for RA treatment because they can regulate cell proliferation, apoptosis (30), cytokine expression (17,31) and metallo-

hypocholesterolemic, anti diabetic and antioxidant activities. Particular attention has been given to their potential for cancer chemoprevention, especially as apoptosis inducers (25). Recently, we demonstrated that diosgenin-induced apoptosis in cancer cell lines (26-28). Furthermore, we described for the first time that diosgenin-induced apoptosis in human RA FLS and, in addition, the expression of COX-2

Figure 5. Different contribution of p38 and JNK pathways compared to ERK and Akt pathways on diosgenin-induced RA FLS apoptosis. Cells were treated without or with 40 μM diosgenin alone for 24 h, or pre-incubated for 2 h with 10 μM SB203580 (p38 inhibitor), 10 μM SP600125 (JNK inhibitor), 10 μM U0126 (MEK inhibitor) or 20 μM LY294002 (PI3 kinase/Akt inhibitor) before addition of 40 μM diosgenin for 24 h. Apoptosis was quantified on pooled cells (floating and adherent) by the cell death detection ELISA™. Measurements were made on FLS from four different patients. Data are expressed as mean ± SD of four experiments. A P-value <0.01 and *P-value <0.05 (Fisher’s PLSD test) were considered to indicate significance compared to untreated cell control or diosgenin alone respectively.

inhibition of ERK phosphorylation. IL-1 treatment, which is known to induce MAPK phosphorylation (34), served as a positive control. Recently, Yen et al (35) reported that diosgenin promoted angiogenesis in pre-osteoblast-like cells by a hypoxia-inducible factor-1α dependent mechanism involving the activation of p38 MAPK. Our recent study showed that, diosgenin (40 μM) inhibited ERK activation but activated p38 and JNK in human erythroleukemia (HEL) cells (28).

Survival factors such as Akt and NF-κB were also studied in diosgenin-induced apoptosis in human RA FLS. Akt is known to be activated in the rheumatoid synovial tissues (12) and is a master regulator of growth and survival. Recent studies have shown that Akt activation inhibits apoptosis in rheumatoid synovial cells (12,13). Furthermore, PI3 kinase/Akt pathways have been reported to activate NF-κB in RA (36). In our study, Akt and NF-κB are potentially required for diosgenin-induced apoptosis in human RA FLS because 40 μM diosgenin abrogated Akt phosphorylation which correlated with an inhibition of NF-κB nuclear translocation. In the recent work described above (35), the authors described also that diosgenin promoted angiogenesis by a mechanism involving the activation of Akt signalling pathway. It has also been shown that diosgenin inhibits osteoclastogenesis, invasion, and proliferation through the down-regulation of Akt, IκB kinase activation and NF-κB-regulated gene expression (37).

To confirm the implication of MAPK and Akt kinase signalling pathways in diosgenin-induced apoptosis in human RA FLS, we used specific inhibitors for pre-treatment before addition of diosgenin. After quantitative determination of cytoplasmic histone-associated-DNA-fragments (mono- and oligonucleosomes) with ELISA, our results showed that SB203580 (p38 inhibitor) and SP600125 (JNK inhibitor) reduced diosgenin-induced DNA fragmentation whereas U0126 (MEK inhibitor) and LY294002 (PI3 kinase/Akt inhibitor) caused an amplification of the proapoptotic effect of diosgenin. Taken together, these findings provide evidence that diosgenin (40 μM) promotes apoptosis in human RA FLS by a mechanism involving p38 and JNK activation and inhibition of ERK and Akt signalling pathways.

RA is characterized by the proliferation of synoviocytes which also produce prostanoids. Eicosanoids and prostanoids are important lipid mediators that are produced at elevated levels in inflamed tissues including rheumatoid synovium and in cultured human RA FLS (16,38,39). COX, which converts arachidonic acid into PG endoperoxides, is the rate limiting enzyme in prostand synthesis. It has been previously suggested that both COX-1 and COX-2 are expressed by human RA FLS and, in addition, the expression of COX-2 messenger RNA and protein is enhanced by proinflammatory cytokines such as IL-1β and tumor necrosis factor-α (40). Our recent results demonstrated the fact that diosgenin can induce apoptosis in cancer cells (26,27) and in human primary cultured synoviocytes (14) with COX-2 up-regulation. We have shown that selective inhibition of COX-2 activity with celecoxib diminished diosgenin-induced DNA fragmentation in human synoviocytes (14). Furthermore, increased PGE2 was shown to be related to apoptosis induction in growth plate chondrocytes (41) and, more recently, Pelletier et al (42) found that the in situ increase in chondrocyte death/apoptosis in experimental osteoarthritis was mainly caspase dependent and was influenced
by up-regulation of COX-2 levels. In synoviocytes, nitric oxide induced synoviocyte death through COX-2 expression and PGE2 synthesis with a significant change in mitochondrial membrane potential associated with caspase-3 activation (43). These results concerning the effects of nitric oxide are in agreement with our first study on the effects of diosgenin on RA FLS (14). All these reports have shown that the effects of COX-2 and related PGE2 in the regulation of apoptosis played an important role. Today, the connection between COX-2 expression and activation of the MAPK signalling pathway is well known. Recent studies pointed out that inhibition of COX-2 expression is directly correlated with inhibition of the MAPK cascade including p38 MAPK in rheumatoid synovial cells (21,22). For this reason, our new investigations were focused on COX-2 in relation to the MAPK pathway during diosgenin-induced apoptosis in human RA FLS.

In the present study, we demonstrated that diosgenin increased COX-2 activity resulting in overproduction of PGE2 and 6-keto-PGF1α in human RA FLS. However, production of other prostanoids such as PGD2, 15-d-PGJ2, and TxB2 was not modified after diosgenin treatment. The cyclopentenone PGJ2 is formed within the cyclopentenone ring of endogenous PGD2 by a nonenzymatic reaction. 15-d-PGJ2 was released by human articular chondrocytes and found in joint synovial fluids taken from osteoarthritis or rheumatoid arthritis patients. It is well known today that 15-d-PGJ2 is implicated in the regulation of apoptosis induction. Indeed, 15-d-PGJ2-induced apoptosis of chondrocytes from osteo-

Figure 6. Schematic summary of signalling pathways involved in diosgenin-induced apoptosis associated with COX-2 up-regulation in human RA FLS in vitro. (A), Diosgenin-induced apoptosis in human RA FLS by inhibition of activation of survival transducing factors such as ERK, Akt and NF-κB but also by activation of apoptotic transducers such as p38 and JNK. Pre-treatment with SB203580 or SP600125 (p38 or JNK inhibitors) before addition of diosgenin-reduced diosgenin-induced apoptosis whereas pre-treatment with U0126 or LY294002 (MEK or PI3 kinase/Akt inhibitors) amplified the effect of diosgenin. (B), COX-2 up-regulation was correlated with diosgenin-induced apoptosis whereas mPGES-1 expression was not modified (NS, non-significant compared to untreated cells). Diosgenin (40 μM) specifically induced the synthesis of PGE2 and 6-keto-PGF1α without modifying the production of other prostanoids (PGD2, 15-d-PGJ2, PGF2α, and TxB2; NS, non-significant compared to untreated cells). In our model, specific inhibitors of each MAPK reduced diosgenin-induced COX-2 expression and activity. (C), This work demonstrates that a combined association implicating a MEK inhibitor (U0126) and diosgenin is the most efficient way in inducing very strong apoptosis with down-regulation of COX-2 expression and activity in human RA FLS.
the synthesis of PGE2 and 6-keto-PGF1α modified (Fig. 6B). Diosgenin (40 μM) specifically induced up-regulation whereas the expression of mPGES-1 was not increased by diosgenin (Fig. 6A). On the other hand, we showed that diosgenin-induced apoptosis was correlated with COX-2 expression compared to untreated human RA FLS. Consequently, apoptosis induced by diosgenin is COX-2 dependent but mPGES-1 independent in our model of primary cultured human RA FLS.

As we observed that, of all studied prostanoids, PGE2 was the principal one produced after diosgenin-induced apoptosis in human RA FLS, we analyzed the expression of mPGES-1. PGES-1, the enzyme converting COX-derived PGH2 into PGE2, exists in multiple forms with distinct enzymatic properties, modes of expression, subcellular localizations and intracellular functions. One of its isoforms, mPGES-1, is a perinuclear membrane-associated protein belonging to the microsomal glutathione S-transferase family. mPGES-1 is preferentially linked to inducible COX-2 and helps to stimulate PGE2 synthesis (46). mPGES-1 was recently shown to be a novel target for arthritis (47), and it is well described that mPGES-1 is expressed in human RA FLS (48), in rheumatoid synovium (49) and in RA synovial fluid mononuclear cells (50). In the present study, diosgenin did not induce mPGES-1 expression compared to untreated human RA FLS. Consequently, apoptosis induced by diosgenin is COX-2 dependent but mPGES-1 independent in our model of primary cultured human RA FLS.

In conclusion, based on our new investigations summarized in Fig. 6 and on our previous results (14), we showed that diosgenin-induced apoptosis in human RA FLS in vitro by inhibition of the activation of survival transducing factors such as ERK, Akt and NF-κB but also by activation of apoptotic transducers such as p38 and JNK. These results have been confirmed by using an inhibitory strategy on MAPK and Akt signalling. Pre-treatment with SB203580 or SP600125 (p38 or JNK inhibitors) before diosgenin addition reduced diosgenin-induced apoptosis whereas pre-treatment with U0126 or LY294002 (MEK or PI3 kinase/Akt inhibitors) amplified the effect of diosgenin (Fig. 6A). On the other hand, we showed that diosgenin-induced apoptosis was correlated with COX-2 up-regulation whereas the expression of mPGES-1 was not modified (Fig. 6B). Diosgenin (40 μM) specifically induced the synthesis of PGE2, and 6-keto-PGF1α, without modifying the production of other prostanoids (PGD2, 15d-PGJ2, PGE2α, and TxB2). Furthermore, in our model, specific inhibitors of each MAPK reduced diosgenin-induced COX-2 expression and activity (Fig. 6B).

Acknowledgements
This study was supported by grants from La Société Française de Rhumatologie. The authors acknowledge Lionel Forestier for his excellent technical assistance for TLDA experiments and Dr Jeanne Cook-Moreau for helpful discussions in the preparation of this manuscript.

References

Taken together, these new results provide, for the first time, strong evidence that a combined association implicating a MEK inhibitor (U0126) and diosgenin is the most effective in inducing very strong apoptosis with down-regulation of COX-2 expression and activity in human RA FLS in vitro (Fig. 6C).

