Curcumin induces apoptosis and inhibits prostaglandin E\textsubscript{2} production in synovial fibroblasts of patients with rheumatoid arthritis

CHEOL PARK1,2*, DONG-OH MOON3*, IL-WHAN CHOI3, BYUNG TAE CHOI3, TAEK-JEONG NAM6, CHUNG-HO RU7, TAEG KYU KWON8, WON HO LEE2, GI-YOUNG KIM3* and YUNG HYUN CHOI1,6*

1Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan 614-052; 2Department of Biology, Pusan National University, Busan 609-735; 3Faculty of Applied Marine Science, Cheju National University, Jeju 690-756; 4Department of Microbiology, Inje University College of Medicine, Pusan 614-735; 5Department of Anatomy, Dongeui University College of Oriental Medicine; 6Faculty of Food Science and Biotechnology, Pukyong National University, Busan 608-737; 7Department of Biomaterial Control (BK21 Program), Dongeui University Graduate School, Busan 614-052; 8Division of Applied Life Science, Gyeongsang National University, Jinju 660-701; 9Department of Immunology, School of Medicine, Keimyung University, Taegu 700-712, Korea

Received April 16, 2007; Accepted May 31, 2007

Correspondence to: Dr Yung Hyun Choi, Department of Biochemistry, Dongeui University College of Oriental Medicine, Busan 614-052, Korea
E-mail: choiyh@deu.ac.kr
Dr Gi-Young Kim, Faculty of Applied Marine Science, Cheju National University, Jeju 690-756, Korea
E-mail: immunkim@cheju.ac.kr

*Contributed equally

Key words: rheumatoid arthritis, synovial fibroblasts, curcumin, apoptosis, cyclooxygenase-2

Abstract. Rheumatoid arthritis (RA) is a chronic inflammatory disease that is characterized by hyperplasia of the synovial fibroblasts, which is partly the result of decreased apoptosis. This study investigated the mechanisms through which curcumin, a polyphenolic compound from the rhizome of \textit{Curcuma longa}, exerts its anti-proliferative action in the synovial fibroblasts obtained from patients with RA. Exposure of the synovial fibroblasts to curcumin resulted in growth inhibition and the induction of apoptosis, as measured by MTT assay, fluorescent microscopy and Annexin-V-based assay. RT-PCR and immunoblotting showed that treating the cells with curcumin resulted in the down-regulation of anti-apoptotic Bcl-2 and the X-linked inhibitor of the apoptosis protein as well as the up-regulation of pro-apoptotic Bax expression in a concentration-dependent manner. Curcumin-induced apoptosis was also associated with the proteolytic activation of caspase-3 and caspase-9, and the concomitant degradation of poly(ADP-ribose) polymerase protein. Furthermore, curcumin decreased the expression levels of the cyclooxygenase (COX)-2 mRNA and protein without causing significant changes in the COX-1 levels, which was correlated with the inhibition of prostaglandin E\textsubscript{2} synthesis. These results show that curcumin might help identify a new therapeutic pathway against hyperplasia of the synovial fibroblasts in RA.

Introduction

Apoptosis is genetically programmed cell death that constitutes a systemic means of cell suicide within an organism during normal morphogenesis and tissue remodelling and as a response to pathogenic infections or other irreparable cell damage. The aberrant regulation of apoptosis has been observed in many human diseases such as inflammation, neuronal disease, autoimmune diseases and cancer. Therefore, understanding the mechanism of apoptosis is important for preventing and treating many of these diseases (1,2). Rheumatoid arthritis (RA) is a chronic inflammatory disease that causes progressive joint destruction, deformity and disability. The initial histological features of RA are characterized by synovial lining hyperplasia, excessive angiogenesis, and the accumulation of mononuclear cells in the synovium (3,4). It should be noted that both macrophage-like synovial fibroblasts residing in the lining layer of the synovium and fibroblast-like synovial fibroblasts located in the sublining layer expand in the synovial tissue of RA patients. T and B lymphocytes and macrophages infiltrate the affected synovial tissues, and promote the release of high concentrations of pro-inflammatory cytokines, including tumor necrosis factor (TNF)-\alpha and interleukin (IL)-1. In response to these cytokines, the synovial fibroblasts proliferate vigorously and form pannus tissues, which
PGE2 has a marked impact on the prevention and alleviation of inflammation-related pain. Therefore, the inhibition of COX-2 as well as chronic inflammation and hyperplasia. However, the role of COX-2 in inflammation-related pain can be partially reversed by inhibiting PGE2 (14,15). Recent reports have highlighted the role of COX-2 and PGE2 in cell apoptosis, particularly in cancer cells. The overexpression of the COX-2 gene protects the cells from apoptosis, and drugs that inhibit COX-2 have been shown to induce programmed death in these cells (16,17). Alterations in the apoptosis of synovial fibroblasts have been observed in resident synoviocytes as well as in inflammatory cells, and are associated with the pathogenesis of RA (8,9). These changes constitute the hallmark of synovial cell activation and contribute to both chronic inflammation and hyperplasia. However, the role of COX-2 and PGs in synoviocyte death is still under investigation. Therefore, the inhibition of COX-2 as well as PGE2 has marked impact on the prevention and alleviation of inflammation-related pain.

Curcumin (diferyluloylmethane) is a yellow pigment found in the rhizome of turmeric (Curcuma longa L., Zingiberaceae) and related species, and has a wide range of pharmacological and biological activity (18,19). The anti-oxidant and anti-inflammatory effects of this compound have been assessed in various in vitro and in vivo systems. The chemopreventive properties of curcumin are also well documented (19-22). One of the most plausible mechanisms underlying the chemopreventive effects of curcumin involves the suppression of tumor promotion. In addition, this compound has been recognized as a promising anti-cancer drug on account of its ability to induce the efficient arrest cell proliferation and cell death in a variety of tumor cells (19,23,24). Although several studies have reported curcumin to modulate numerous aspects of the cell function relevant to inflammatory arthritis, the molecular mechanisms of curcumin in RA synovial fibroblasts are not completely understood. This study investigated the effects of curcumin on the growth inhibition and apoptosis of synovial fibroblasts obtained from RA patients. Particular attention was paid to the modulation of COX-2 expression and the production of PGE2 in the curcumin-treated synovial fibroblasts. The results demonstrated that the decreased viability of RA synovial fibroblasts exposed to curcumin was mediated by the induction of apoptosis, which was related to the modulation of the expression of the Bcl-2 family and the activation of caspases. Furthermore, the down-regulation of the COX-2 expression by the curcumin treatment was associated with the inhibition of PGE2 release.

Materials and methods

Cell culture, curcumin and growth study. The synovial fibroblasts were obtained from RA patients by Dr S-I. Lee at Chonbuk National University Medical School and the Research Institute of Clinical Medicine (Jeonju, Korea) during joint replacement surgery as previously described (25). Briefly, the tissues were minced and incubated with 1 mg/ml collagenase in serum-free DMEM (Life Technologies, Gaithersburg, MD) for 2 h at 37°C, filtered through a nylon mesh, washed extensively, and cultured in DMEM supplemented with 10% fetal calf serum (FCS), penicillin, streptomycin, gentamicin, and L-glutamine in a humidified atmosphere containing 5% CO2. After an overnight culture, the nonadherent cells were removed, and the adherent cells were cultivated in DMEM plus 10% FCS. When the cells reached confluency, they were trypsinized, split at a 1:3 ratio, and recultured in medium. Curcumin [1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-dione, diferuloyl methane; Sigma Chemical Co., St Louis, MO] was prepared as a 20-mM solution in dimethyl sulfoxide and further diluted in the cell culture medium. Measurement of cell viability was determined using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, which is based on the conversion of MTT to MTT-formazan by mitochondria. For the morphological study, the synovial fibroblasts were treated with curcumin for 24 h and photographed directly with an inverted microscope (Carl Zeiss, Germany).

Detection of apoptosis by Annexin-V FITC staining. The fibroblasts were washed with PBS and re-suspended in an Annexin-V binding buffer containing 10 mM HEPES/NaOH, pH 7.4, 140 mM NaCl, and 2.5 mM CaCl2. Aliquots of the cells were incubated with Annexin-V fluorescein isothiocyanate (FITC), mixed, and incubated for 15 min at room temperature in the dark. Propidium iodide (PI) at a concentration of 5 μg/ml was added to distinguish the necrotic cells. The apoptotic cells (V+/PI-) were measured by the fluorescence-activated cell sorter analysis in a FACS analyzer (Becton Dickinson, San Jose, CA).

Nuclear staining with DAPI. The cells were washed with PBS and fixed with 3.7% paraformaldehyde in PBS for 10 min at room temperature. The fixed cells were washed with PBS, and stained with a 4,6-diamidino-2-phenylindole (DAPI, Sigma) solution for 10 min at room temperature. The cells were then washed twice with PBS and analyzed by fluorescence microscopy (Carl Zeiss).

RNA extraction and reverse transcription-PCR. The total RNA was prepared using an RNeasy kit (Qiagen, La Jolla, CA) and primed with random hexamers to synthesize the complementary DNA using AMV reverse transcriptase (Amersham Corp., Arlington Heights, IL) according to the manufacturer’s instructions. A polymerase chain reaction was used to amplify the samples.
(PCR) was carried out using a Mastercycler (Eppendorf, Hamburg, Germany) with the primers shown in Table I. The following conditions were used for the PCR reactions: 1 cycle (94˚C for 3 min); 35 cycles (94˚C for 45 sec; 58˚C for 45 sec and 72˚C for 1 min) and 1 cycle (72˚C for 10 min). The resulting amplification products were separated electrophoretically on 1% agarose gel and visualized by ethidium bromide (EtBr, Sigma) staining.

Gel electrophoresis and Western blot analysis. The cells were harvested, lysed, and the protein concentrations were quantified using a BioRad protein assay (BioRad Lab., Hercules, CA), according to the manufacturer’s instructions. For Western blot analysis, an equal amount of the protein was subjected to electrophoresis on an SDS-polyacrylamide gel and transferred to a nitrocellulose membrane (Schleicher & Schuell, Keene, NH) by electroblotting. The blots were probed with the desired antibodies for 1 h, incubated with the diluted enzyme-linked secondary antibody and visualized by enhanced chemiluminescence (ECL) according to the recommended procedure (Amersham). The primary antibodies were purchased from Santa Cruz Biotechnology Inc. (Santa Cruz, CA) and Calbiochem (Cambridge, MA). The peroxidase-labeled donkey anti-rabbit immunoglobulin and peroxidase-labeled sheep anti-mouse immunoglobulin were purchased from Amersham.

Table I. Oligonucleotides used in RT-PCR.

<table>
<thead>
<tr>
<th>Name</th>
<th>Sequence of primers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bcl-2</td>
<td>Sense 5'—CAG-CTG-CAC-CTG-ACG-3'</td>
</tr>
<tr>
<td></td>
<td>Antisense 5'—GCT-GGG-TAG-TGT-CAT-3'</td>
</tr>
<tr>
<td>Bax</td>
<td>Sense 5'—ATG-GAC-GGG-TCC-GGG-GAG-3'</td>
</tr>
<tr>
<td></td>
<td>Antisense 5'—TGG-AAAG-AAG-ATG-GGA-TGA-3'</td>
</tr>
<tr>
<td>XIAP</td>
<td>Sense 5'—GAA-GAC- CCT-TGG- GAA-CAA-CA-3'</td>
</tr>
<tr>
<td></td>
<td>Antisense 5'—CGC-CTT-AGC-TGC-TCT-CAG-T-3'</td>
</tr>
<tr>
<td>cIAP-1</td>
<td>Sense 5'—TGA-GCA-TGC-AGA-CA-TGC-ATG-C-3'</td>
</tr>
<tr>
<td></td>
<td>Antisense 5'—TGA-CGG-ATG-AAC-CTC-TGT-CC-3'</td>
</tr>
<tr>
<td>cIAP-2</td>
<td>Sense 5'—CAG-AAT-TGG-CAA-GAG-CTG-G-3'</td>
</tr>
<tr>
<td></td>
<td>Antisense 5'—CAC-TTG-CAA-GCT-GCT-CAG-G-3'</td>
</tr>
<tr>
<td>Fas</td>
<td>Sense 5'—TCT-AAC-TTG-GGG-CTT-TGT-CCT-C-3'</td>
</tr>
<tr>
<td></td>
<td>Antisense 5'—GTG-TCA-TAC-GCT-TTC-TTT-CCA-T-3'</td>
</tr>
<tr>
<td>FasL</td>
<td>Sense 5'—GGA-TTG-GGC-CTG-GAG-ATG-CTC-CA-3'</td>
</tr>
<tr>
<td></td>
<td>Antisense 5'—AGC-CCA-GTT-TTG-TTG-ATC-ACA-AGG-3'</td>
</tr>
<tr>
<td>COX-1</td>
<td>Sense 5'—TGC-CCA-GCT-CCT-GGC-CCG-CCT-3'</td>
</tr>
<tr>
<td></td>
<td>Antisense 5'—GTG-CAT-CAA-CAC-AGG-CGC-CTC-TTC-3'</td>
</tr>
<tr>
<td>COX-2</td>
<td>Sense 5'—TTC-AAA-TGA-GAT-GTG-GGA-CTA-3'</td>
</tr>
<tr>
<td></td>
<td>Antisense 5'—AGA-TCA-TCT-CTG-CCT-GAG-TAT-CTT-3'</td>
</tr>
<tr>
<td>GAPDH</td>
<td>Sense 5'—CGG-AGT-CAA-CGG-ATT-TGG-TCG-TAT-3'</td>
</tr>
<tr>
<td></td>
<td>Antisense 5'—AGC-CTT-CTC-CAT-GGT-GTT-GAA-3'</td>
</tr>
</tbody>
</table>

PGE2 EIA analysis. After treating the cells with curcumin, the medium was removed and the amount of PGE2 released by the cells was measured. To measure the level of PGE2 accumulation, an enzyme immunoassay (EIA) was performed using a commercial kit (Cayman Chemicals, Ann Arbor, MI) according to the manufacturer’s protocol. The level of PGE2 production was normalized with respect to the number of viable cells present in the particular culture.

Results

Inhibition of viability and induction of apoptosis by curcumin in synovial fibroblasts. To determine if curcumin influenced the viability of RA synovial fibroblasts, the cells were cultured in the presence of increasing concentrations of curcumin ranging from 25-100 μM. After 24 h, the cell viability was determined by the MTT assay. The results showed that curcumin led to a reduced viability of synovial fibroblasts in a concentration-dependent manner (Fig. 1A).
Direct observation by inverted microscopy showed that the synovial fibroblasts treated with curcumin showed numerous morphological changes from the control cells (Fig. 1B). Cell shrinkage, cytoplasm condensation and the formation of cytoplasmic filaments appeared after a 50-μM curcumin treatment for 24 h. Further experiments were carried out to determine if the inhibitory effect of curcumin on cell viability was the result of apoptotic cell death. Morphological analysis with DAPI staining revealed nuclei with chromatin condensation and the formation of apoptotic bodies in the cells cultured with curcumin in a concentration-dependent manner. However, very few nuclei with chromatin condensation were observed in the control culture (Fig. 2A). Therefore, flow cytometry analysis with Annexin V and PI staining was performed to determine the magnitude of the apoptosis elicited by curcumin. As shown in Fig. 2B, the number of Annexin V+ cells increased in the curcumin-treated synovial fibroblasts in a concentration-dependent manner compared with the untreated control cells suggesting that the inhibition of cell viability observed in response to curcumin is associated with the induction of apoptotic cell death.

Modulation of Bcl-2 and IAP family expression in curcumin-treated synovial fibroblasts. The apoptotic cascades caused by curcumin in the synovial fibroblasts were examined by exposing the cells to curcumin and measuring the levels of the Bcl-2 family members. RT-PCR and Western immunoblotting showed that the transcriptional and translational levels of pro-apoptotic Bax expression were induced slightly in the curcumin-treated synovial fibroblasts, whereas the levels of anti-apoptotic Bcl-2 expression were markedly inhibited in response to the curcumin treatment (Fig. 3). The expression levels in the curcumin-treated synovial fibroblasts were also examined in order to determine if curcumin induces synovial fibroblast death through a change in the expression of the inhibitors of the apoptosis protein (IAP) family members. As shown in Fig. 4, curcumin induced a concentration-dependent decrease in the expression levels of the X-linked IAP (XIAP) mRNA and protein but had no effect on the cIAP-1 and cIAP-2 levels. This suggests that curcumin specifically down-regulates the expression of XIAP in synovial fibroblasts.

Activation of caspase-3 and caspase-9 in curcumin-treated synovial fibroblasts. The expression and activity of caspases such as caspase-3, caspase-8 and caspase-9 in the curcumin-treated synovial fibroblasts were next examined by Western
blot analysis and an in vitro activity assay. The results showed that the curcumin treatment down-regulated the levels of the pro-caspase-3 and pro-caspase-9 proteins but had little effect on the pro-caspase-8 levels (Fig. 5A). In order to further quantify the proteolytic activation of the caspases, the lysates equalized for the protein from the fibroblasts treated with curcumin were assayed for their caspase-3, caspase-8 and caspase-9 activity using DEVD-pNA, IETD-pNA and LEHD-pNA as substrates, respectively. As shown in Fig. 5B, the curcumin treatment increased the caspase-3 and caspase-9 activity (~4- to 6-fold after 24-h exposure to 100 μM curcumin) in a concentration-dependent manner; but caspase-8 was not significantly activated in the curcumin-treated cells (Fig. 5B).

Subsequent Western blot analysis showed the progressive proteolytic cleavage of the poly(ADP-ribose) polymerase (PARP) protein, which is a downstream target of the activated caspase-3 (26) in the synovial fibroblasts after the curcumin treatment in a concentration-dependent manner (Fig. 4A).

Inhibition of COX-2 activity and PGE\textsubscript{2} production by curcumin. This study next examined whether or not the curcumin-induced anti-proliferative effect of the synovial fibroblasts was connected to the reduced activity of COXs. RT-PCR and Western blot analyses showed a significant decrease in COX-2 mRNA and protein expression after the curcumin treatment, but curcumin had little effect on COX-1 expression (Fig. 6A and B). In order to confirm that PGE\textsubscript{2} production was associated with the catalytic activity of the COX-2 isofrom, the synovial fibroblasts were cultured in the presence of curcumin, and the PGE\textsubscript{2} levels were measured. As shown in Fig. 6C, the synthesis of PGE\textsubscript{2} was concentration-dependent, and its production was decreased significantly over time after the curcumin treatment, which was well correlated with the down-regulation of COX-2 expression.

Discussion

RA is an autoimmune disease that is characterized by synovial proliferation, infiltration of lymphocytes and macrophages into the synovial lining, and a paucity of apoptosis (8,9,27). In RA, fibroblasts that reside in the synovial lining markedly increase in number, show a transformed phenotype, and destroy the adjacent cartilage and bone. Protection against synovial fibroblast apoptosis might contribute to the synovial hyperplasia that is associated with RA. Therefore, identifying the agents that induce apoptosis in rheumatoid synovial fibroblasts might be a key step toward a successful treatment of RA (7-9). These results clearly demonstrate that curcumin induces apoptosis in the synovial fibroblasts of RA patients, which appears to account for its anti-proliferating activity. The induction of apoptosis by curcumin was confirmed by the characteristic morphological changes and Annexin-V-based assay (Fig. 2).
The regulation of apoptosis is a complex process involving a number of gene products including the Bcl-2 family. Bax, a pro-apoptotic factor of the Bcl-2 family, is found in monomeric form in the cytosol or is loosely attached to the membranes under normal conditions. Following a death stimulus, cytosolic and monomeric Bax translocates to the mitochondria where it becomes an integral membrane protein and cross-linkable as a homodimer. After being inserted into the membranes, Bax may form channels or pores allowing for the release of factors from the mitochondria, such as cytochrome c, to propagate the apoptotic pathway (28,29).

Unlike Bax, which is an anti-apoptotic factor, Bcl-2 is mainly localized as an integral mitochondrial membrane protein and protects the cell from multiple signals that lead to cell death. Bcl-2 forms heterodimers with Bax to prevent mitochondrial changes, thereby blocking the caspase activation step of the apoptotic process (30-32). Therefore, it has been suggested that the ratio between the level of the pro-apoptotic Bax protein and that of the anti-apoptotic factor Bcl-2 protein determines if a cell will respond to an apoptotic signal. In this study, after treating the synovial fibroblasts with different curcumin concentrations, the expression of Bcl-2 decreased significantly, while Bax expression increased in a concentration-dependent manner (Fig. 3). The caspases play a key role in the execution phase of cell death through various apoptotic stimuli (30,32). They are synthesized initially as single polypeptide chains representing the latent precursors that undergo proteolytic processing at specific residues to produce subunits that form an active heterotetrameric protease. The activated caspases induce limited proteolysis in a number of cellular proteins including PARP.
which are degraded by the caspase family as a consequence of apoptosis and have been used as a marker of apoptosis (26,33). The processing and activation of caspasas can be regulated by molecules such as the Bcl-2 family as well as IAP family members (34). In the cytosol, cytochrome c activates caspase-9, which in turn activates the effector caspasas such as caspase-3 and caspase-7. Bcl-2 and its related proteins control the release of cytochrome c from the mitochondria, whereas the IAP molecules modulate the activity of caspasas through a direct interaction with the active caspasas (34). As shown in Figs. 4 and 5, the exposure of synovial fibroblasts to curcumin caused the proteolytic activation of caspase-3 and caspase-9 as well as the selective down-regulation of XIAP, which is associated with the concomitant degradation of the PARP protein and the accumulation of the 85 kDa. Although it is unclear how curcumin decreases the XIAP content in the synovial fibroblasts, curcumin has been shown to activate the down-stream caspasas. XIAP is a substrate of caspase-3 (34,35). Therefore, it is possible that the observed decrease in the XIAP content is a consequence of caspase-3-mediated processing after the curcumin treatment. In this study, the Bax/Bcl-2 ratio in the synovial fibroblasts increased significantly after the curcumin treatment in a concentration-dependent manner. Likewise, the trend of XIAP expression after the curcumin treatment was consistent with the result of the Annexin-V FITC staining, as well as that of caspase-3 and caspase-9 activation. Therefore, these results strongly suggest that in curcumin-induced apoptosis, an imbalance of Bax/Bcl-2 might be the upstream event in the mitochondrial pathway, and the latter activation of caspase-9 and caspase-3 may lead to apoptosis. However, whether curcumin can induce apoptosis through other pathways, such as the death receptor pathway or endoplasmic reticulum pathway is still unknown. Moreover, the mechanisms for the phosphorylation and activation of multiple apoptosis-related proteins in curcumin-induced apoptosis require further study.

RA is characterized by the proliferation of synoviocytes, which also produce prostanoids. Eicosanoids and prostanoids are important lipid mediators that are produced at elevated levels in inflamed tissues including the rheumatoid synovium as well as in cultured human RA fibroblast-like synoviocytes. COX, which converts arachidonic acid into PG endoperoxides, is the rate-limiting enzyme in prostaglandin synthesis (10,11). In normal cells, COX-1 is considered to be the constitutively expressed form and is believed to serve the housekeeping functions. However, COX-2 is expressed at very low basal levels and is rapidly induced by different products such as inflammatory cytokines, tumor promoters or growth factors. Therefore, COX-2 up-regulation is a key step in the initiation of inflammation and carcinogenesis, and the inhibition of COX-2 activity promises to be an effective approach in the prevention and treatment of inflammation and cancer (14,15). Crofford et al (36) reported that pro-inflammatory cytokines such as IL-18 and TNF-α enhanced the de novo synthesis of the COX-2 mRNA and protein in rheumatoid synovial explants and cultured rheumatoid synoviocytes, but had no effect on COX-1. This suggests that COX-2 plays an important role in the overproduction of PGE₂ by the rheumatoid synovial fibroblasts. In addition, the newly developed selective COX-2 inhibitors are now being used as anti-inflammatory agents to treat patients with RA. Recently, Lee et al (37) reported that curcumin inhibits the interferon (IFN)-α-induced expression of COX-2. The suppression of IFN-α-induced COX-2 activation by curcumin is consistent with a previous study, which showed that curcumin inhibits the TNF-α-induced COX-2 expression in human colon cancer cells via NF-κB activation (38). Zhang et al (39) also reported that treating several human gastrointestinal cell lines with curcumin suppressed the expression of the COX-2 protein and mRNA, as well as PGE₂ production by chenodeoxycholate or phorbol ester. This study examined whether or not the curcumin-induced growth inhibitory effect of the synovial fibroblasts was associated with the inhibition of basal COX-2 expression and activity in order to determine the mechanisms by which curcumin inhibits synovial fibroblast proliferation. As shown in Fig. 6A and B, curcumin markedly inhibited the expression of both the COX-2 mRNA and protein in the synovial fibroblasts. However, the levels of COX-1 remained unchanged. In addition, the amount of PGE₂ produced by the synovial fibroblasts decreased with increasing curcumin concentration (Fig. 6C). These results suggest that the inhibition of the COX-2 expression and PGE₂ production is consistent with the results showing that curcumin inhibits synovial fibroblast growth and induces apoptosis.

In conclusion, curcumin inhibits human synovial fibroblast growth through the induction of apoptosis. The apoptotic events of the synovial fibroblasts by curcumin were mediated by an alteration in the Bax/Bcl-2 ratio and the activation of caspase-3 and caspase-9. Curcumin concomitantly causes the loss of COX-2 expression as well as the release of PGE₂. Although further studies are needed, these results have not been previously reported and are expected to provide important new insights into the possible biological effects of curcumin.

Acknowledgements

This study was supported by a grant of the Korea Health 21 R&D Project, Ministry of Health and Welfare, Republic of Korea (A062406).

References

