Abstract. The biological presence and regulatory function of the plant alkaloid morphine in relatively simple and complex integrated animal systems has previously been shown. The pivotal role of dopamine as a chemical intermediate in the morphine biosynthetic pathway in plants establishes a functional basis for its expansion into an essential role as the progenitor catecholamine signaling molecule. In invertebrate neural systems, dopamine serves as the preeminent catecholamine signaling molecule, with the emergence and limited utilization of norepinephrine and its biosynthetic enzyme dopamine β-hydroxylase in newly defined adaptational chemical circuits required by a rapidly expanding set of physiological demands. In vertebrates, epinephrine emerges as the major end of the catecholamine synthetic pathway consistent with a newly incorporated regulatory modification, i.e. N-methylation of norepinephrine. Given the striking similarities between the enzymatic steps in the morphine biosynthetic pathway and those driving the evolutionary adaptation of catecholamine chemical species to accommodate an expansion of interactive but distinct signaling systems, we surmise that the evolutionary emergence of catecholamine systems required conservation and selective ‘retrofit’ of specific enzyme activities, i.e. catechol O-methyl transferase and phenylethanol-amine N-methyl transferase, drawn from cellular morphine expression. This hypothesis is further supported by the critical recruitment of enzymatically synthesized tetrahydrobiopterin (BH4) both as an essential cofactor for tyrosine hydroxylase-mediated dopamine production and as a secondary electron donor for nitric oxide synthase-mediated nitric oxide (NO) production. The establishment of a reciprocal regulatory linkage between NO and catecholaminergic processes, as mediated by BH4, subserves a pivotal capacity to promote autocrine and paracrine regulation of signaling molecules. In summary, ongoing development and adaptation of catecholamine signaling pathways in animals appear to be related to their mobile lifestyle associated with complex feeding, sexual and protective processes, which also generate free radicals, thus requiring morphinergic signaling coupling to NO release.

Contents
1. Introduction
2. Enzyme evolvement
3. Intracellular signaling
4. μ3: Supporting the morphinergic presence

Introduction
In examining the literature regarding morphine biosynthesis, it is common knowledge that plants can make morphine (1-15). In this same literature, one can find evidence for components of the catecholamine pathway in plants, yet they do not, as best as we can determine, make or use these monoamines as signaling agents. In invertebrates, it has recently been demonstrated that the ability to make morphine is present in a manner similar to that found in plants (16-18). However, unlike plants, catecholamine signaling emerges in invertebrates with dopamine as the major molecule used in neural systems (19-21). There are even a few reports in long-lived invertebrates that norepinephrine is present, however, always at low levels (22). Importantly, despite numerous attempts, our laboratory could not identify epinephrine in invertebrate or plant tissues, suggesting that this synthesis had not emerged hundreds of millions of years ago. In vertebrates, it is widely known that the catecholamine pathway is present and it terminates in the synthesis of epinephrine (23). Recently, in healthy and normal human tissues we demonstrated that morphine can be made (24). Taken together, both plants and animals make morphine, and only in vertebrates is the catecholamine pathway complete, strongly suggesting that catecholamine biosynthesis emerged from the morphine biosynthetic pathway since both depend on tyrosine, L-DOPA, dopamine (DA) and tyramine (18,24,25) (Fig. 1).
Speculating further, the question arises as to what pressure or need forced this new signaling pathway, i.e., catecholamine, to emerge in its own right? We surmise, given numerous reports from many laboratories, that morphine exerts general downregulation of tissue excitability via highly specific cellular and receptor-mediated processes, protecting tissues from over excitability (26-29). This is also true for its actions in plants (3). Therefore, with the advance of more complex motor activities in invertebrates and vertebrates associated with complex feeding, sexual and protective processes, a new signaling system had to emerge, namely, in the form of DA in invertebrates. Thus, DA may serve as a major signaling molecule associated with a mobile lifestyle found in these animals.

It is our contention that this dopaminergic regulatory function associated with mobility was so successful in invertebrates that it was continued in vertebrates with further amplification to fully establish norepinephrine (NE) to form epinephrine (E). Furthermore, highlighting this relationship even further is an association of catecholamine brain localization with that of endogenous morphine (16,18,29,59-65). This association may be predicted from the fact that DA is an endogenous morphine precursor, and the ability of morphine-induced NO to downregulate excitatory processes and scavenge free radicals, in part, is associated with catecholamine signaling (28,42).

2. Enzyme evolvement

Positive evolutionary pressure mediates the differentiation of relatively simple cellular systems into complex organ systems. The novel hypothesis presented above must also embrace the evolutionary role of endogenous morphine as a prototype molecular principle by which the exponential increases in cellular differentiation required for adaptation and utilization of the related family of catecholamines as signaling molecules are modeled. In support of our contention, the emergence of catecholaminergic signaling systems was facilitated by the genetic ‘retrofit’ of a common set of enzymes within the morphine biosynthetic pathway to accommodate biochemical maturation and modification of DA-related compounds (25). Notably, the plant N-methyl and O-methyl transferases, required for conversion of the essential morphine precursor norlaudanosoline (also called tetrahydropapaveroline, THP) to the pre-morphinan alkaloid S-reticuline, have been adaptively transformed into major enzymes in catecholamine expression, i.e., phenylethanolamine N-methyl transferase (PNMT) and catechol O-methyl transferase (COMT), respectively. Accordingly, the incremental evolutionary adaptations of DA necessary for the cellular expression and utilization of epinephrine as a neural/neuroendocrine signaling molecule required co-ordinated recruitment and complex regulation of PNMT within tyrosine hydroxylase (TH)- and dopamine β-hydroxylase (DBH)-positive cells (22).

Based on this novel hypothesis that catecholamines emerged from the conserved morphine pathway is the fact that COMT has always been a part of the morphine pathway...
hydropterin synthase; SR, sepiapterin reductase; NOS, nitric oxide synthase; GCH, guanosine triphosphate cyclohydrolase; BH(4), tetrahydrobiopterin.

depends on or via end production inhibition as is the case for dopamine or nitric oxide (49). DHPR, dihydropteridine reductase; PTPS, 6-pyruvoyltetra-

...formed DBH in the evolutionary scheme, reflecting the
...n formation to accommodate the conversion of norepinephrine
...h had to elapse so that COMT/PNMT would undergo a trans-
...order to further develop the catecholamine pathway, time
...hypothesis, since elapsed time had to occur along with a
...catecholamine emergence from the morphine pathway
...h in various disorders associated with oxidative
...component in various disorders associated with oxidative

Figure 2. Demonstrating the ability of morphine as an autocrine and paracrine regulator, acute morphine exposure downregulates both factors its synthesis
...downstream signaling cascade (35-39), found in both plants
...biosynthesis of BH4, indicating that it also preceded the role
...to modulate NOS and TH actions.

Supporting this hypothesis further is the fact that NOS exhibits similarities with CYP 450 (50). Both are hem-thiolate proteins, employing the same prosthetic group to
...effectively perform similar chemistry. They also share the same redox partner, a di flavoprotein reductase, which in the case of NOS is incorporated with the oxygenase in one polypeptide chain. The major difference is the presence in NOS of the additional cofactor tetrahydrobiopterin, which is applied as an auxiliary electron donor to prevent decay of the oxyferrous complex to ferric heme and superoxide, which manages the balance.

(25), yet epinephrine is not present in plants and not
expressed by invertebrate tissues. This also supports
catecholamine emergence from the morphine pathway
hypothesis, since elapsed time had to occur along with a
functional need to make yet another signal molecule. Thus, in
order to further develop the catecholamine pathway, time
had to elapse so that COMT/PNMT would undergo a trans-
formation to accommodate the conversion of norepinephrine
into epinephrine. In this regard, tyrosine hydroxylase
preceded DBH in the evolutionary scheme, reflecting the
appearance of norepinephrine in select long-lived
invertebrates that required a higher level of motor-associated
mobilization strategies (22).

3. Intracellular signaling

To accommodate the ‘newly arrived’ catecholamine pathway,
intracellular signal molecules also had to be ‘redesigned/
stereospecifically matched’ simply to assure conformational
matching so that the highly specific stereoselect nature of
their regulation was possible. In this regard we are drawn to
nitric oxide (NO) signaling because of its uniform presence
in living organisms and its coupling to morphine signaling
(28,32-34). Initially, it was demonstrated that vascular dilation
is mediated to a large extent by endothelium-dependent NO,
produced by the enzyme nitric oxide synthase (NOS) in the
presence of the cofactor tetrahydrobiopterin (BH4), found
only in animals, as well as mediated via the cGMP-dependent
downstream signaling cascade (35-39), found in both plants
and animals. Thus, levels of BH4 in complex animal cellular
systems determine if NO becomes uncoupled from arginine
oxidation, and NOS produces superoxide rather than NO in
animals. Clearly, this uncoupling may represent an important
component in various disorders associated with oxidative
stress and free radical generation in diverse tissues (28,40-44).

Upon re-examining the literature, we found that GTP
cyclohydrolase (GCH) appears to be the rate-limiting enzyme
for BH4 synthesis in animals, and thus has been shown to be
a key modulator of peripheral neuropathic and inflammatory
pain, which is also linked to NO signaling (34,45). Importantly,
BH4 is also an essential cofactor for catecholamine production
in animals, i.e. TH, enhancing its significance further
especially since this pathway extends from morphine bio-
synthesis in animals.

It is important to note that plants do not require BH4 since
they use GCH, which also represents the first step in the
de novo tetrahydrofolate biosynthetic pathway present in
bacteria, fungi, and plants, and encoded in Escherichia coli
by the folE gene (46). It is also the first enzyme of the biopterin
(BH4) pathway in Homo sapiens, where it is encoded by a
homologous folE gene (46). Thus, plants require only GCH,
most likely because DA is not used as a signal molecule just
an intermediate in morphine biosynthesis. With the advent
of additional signal molecules, i.e. catecholamines, we surmise
that BH4 also evolved/adapted to limit or regulate excessive
reactive molecules, such as DA and its by-products, from
emerging and initiating tissue damage as free radicals. This
same logic was employed to limit NOS activity, given the
enhanced free radical potential via catecholamine
biosynthesis. There is a dynamic relationship between BH4
bound to TH and free BH4 that stimulates DOPA release,
suggesting this association is important in morphine synthesis
since DOPA serves as a morphine precursor (25,47).
Supporting a dynamic role for BH4, not only is it a cofactor
for TH but a direct regulator of intracellular concentration of
TH (48). Thus, its use by the catecholamine pathway
separates its general regulatory sphere of influence from that
of GCH in that it performs activities associated with NOS
and TH modulation, which is reciprocal in nature (49). This
relationship is even more important in that GCH controls the
biosynthesis of BH4, indicating that it also preceded the role
of BH4 in animal cells. From this we can surmise that BH4
evolution occurred because it had the stereospecific ability
to modulate NOS and TH actions.

Supporting this hypothesis further is the fact that NOS
exhibits similarities with CYP 450 (50). Both are hem-thiolate proteins, employing the same prosthetic group to perform similar chemistry. They also share the same redox partner, a di flavoprotein reductase, which in the case of NOS is incorporated with the oxygenase in one polypeptide chain. The major difference is the presence in NOS of the additional cofactor tetrahydrobiopterin, which is applied as an auxiliary electron donor to prevent decay of the oxyferrous complex to ferric heme and superoxide, which manages the balance.
between free radical generation and NO. Thus, CYP 450 variants and GCH could not serve as an adequate substitute for BH4, which is specifically designed to modulate this pathway given its unique properties with the advent of catecholamines in animal evolution as a spin-off from morphine biosynthesis.

Additionally, it has been shown that in a DA cell, which is NOS positive, NO has significant and positive effects on cell survival that are anti-apoptotic (51). Recent critical studies have reported the association between NO produced by a specific isotype found in the mitochondrion, i.e. mitochondrial NOS (mtNOS), in regulating cellular oxygen consumption/energy metabolism without engendering oxidative stress (52,53). Interestingly, an association has been made between mtNOS and a NOS enzyme species found in plants (54), demonstrating that plant components are still found in animal cells apparently modulating intracellular actions.

Taken together, our recent elucidation of a de novo morphine biosynthetic pathway in animal cells, with strikingly similar characteristics to that found in opium poppy, and the ability of morphine to stimulate NOS-derived NO release, strongly suggests that evolutionary pressure has conserved primordial regulatory circuitry (25). It also suggests that this system has been carried over from plants and manifests itself in energy and developmental processes (55).

4. μ3: Supporting the morphinergic presence

In 1993, pharmacological evidence was presented for the presence of the μ3 opiate receptor subtype, which is opioid peptide insensitive and morphine selective, on human and invertebrate tissues (56). Ten years later it was cloned on human immune, vascular and neural tissues and was found to be a μ splice variant (57). During this period, it was also demonstrated that this receptor was coupled to constitutive NO production in these diverse human tissues and those of other animals as well, including invertebrates (27-29,32,57).

We surmised that the general yet specific cellular down-regulatory processes of morphine were mediated by constitutive NO (28). The ability of μ3 to also gate intracellular calcium transients, eventually affecting mitochondrial oxygen consumption and energy conservation, provides a compelling functional linkage of this receptor with recently characterized calcium channels (58). Thus, these evolutionarily conserved signaling and regulatory processes were coupled and functionally linked.

The significance of the μ3 opiate receptor is further enhanced by our recent finding that it is present on human stem cells not induced to differentiate (unpublished), which did not contain other types of μ receptors. Taken together, in all probability the μ3 morphine receptor was probably the first in the line of future opioid receptor types that evolved in animals.

With the discovery of the μ3 opiate receptor and its coupling to constitutive NO release came the mechanism to ‘manage’ the evolution of catecholamine signaling, which was needed to effectively control catecholamine activation-type processes (feeding, movement, motivation, sex). Fig. 2 dramatically illustrates the downregulatory action of morphine on the BH4 pathway. Taken together, out of the ‘calming’ homeostatic processes there later emerged a system involved with selective activation (e.g. catecholamine), which would then be downregulated when their goal was accomplished.

In conclusion, it comes as no surprise to comprehend what happens when variations/errors creep into the modulation of the activation processes (e.g. BH4, GCH, COMT/PNMT). Furthermore, the catecholamine emergence from the older morphinergic biosynthesis pathway provides a compelling rationale for the coupling of literature of these and other ancillary pathways into morphinergic signaling processes, providing the missing knowledge for various disciplines such as substance abuse, as well as mental health, since both depend on a catecholamine signaling substrate.

Acknowledgements

This study was supported in part by grants MH 47392 and DA 09010 and the Empire Innovation Program of New York State.

References

