The effect of N-nitro-L-arginine and aminoguanidine treatment on changes in constitutive and inducible nitric oxide synthases in the spinal cord after sciatic nerve transection

NADEZDA LUKACOVA1, ALEXANDRA DAVIDOVA1, DALIBOR KOLESAR1, MARIA KOLESAROVA1, ANDREA SCHREIBEROVA1, MONIKA LACKOVA1, OLGA KRIZANOVA2, MARTIN MARSALA3 and JOZEF MARSALA1

1Institute of Neurobiology, Slovak Academy of Sciences, Kosice; 2Institute of Molecular Physiology and Genetics, Slovak Academy of Sciences, Bratislava, Slovak Republic; 3Anesthesiology Research Laboratory, University of California, San Diego, La Jolla, CA, USA

Received November 7, 2007; Accepted December 28, 2007

Abstract. Ca²⁺-dependent and Ca²⁺-independent nitric oxide synthase (NOS) activity, and neuronal and inducible NOS immunoreactivity (nNOS-IR and iNOS-IR), were investigated in the rabbit lower lumbar spinal cord after i) sciatic nerve transection and survival of experimental animals for 2 weeks, ii) treatment of animals with N-nitro-L-arginine (NNLA), an inhibitor of nNOS dosed at 20 mg/b.w. for 12 days, and iii) after treatment of animals with the inducible NOS (iNOS) inhibitor, aminoguanidine, dosed at 100 mg/b.w. for 4 and 12 days. Our attention was focused on the dorsal part of L4-L6 segments receiving sensory inputs from the sciatic nerve, and on the ventral part consisting of sciatic nerve motor neurons. Sciatic nerve transection increased Ca²⁺-dependent NOS activity and the density of nNOS in the dorsal horn on the ipsilateral side. NNLA treatment effectively reduced nNOS-IR in both the dorsal horn and the dorsal column, and decreased Ca²⁺-dependent NOS activity in the lower lumbar segments. Immunochemical analysis disclosed the up-regulation of iNOS immunoreactive staining after peripheral axotomy in α-motoneurons. The changes in iNOS expression and Ca²⁺-independent NOS activity were not significantly corrected by aminoguanidine treatment for 4 days. Long-lasting iNOS inhibition decreased Ca²⁺-independent NOS activity, but caused motor neuron degeneration and mediated small necrotic foci in the ventrolateral portion of the ventral horn. The results of the present study provide evidence that constitutive NOS inhibition by NNLA is more effective than specific long-lasting inhibition of iNOS by aminoguanidine treatment.

Introduction

Although the effect of peripheral axotomy on the nitrergic mechanism has been extensively investigated, the causality of neuronal damage in the spinal cord and the effect of experimental treatment is still considered controversial. Nitric oxide (NO), generated by nitric oxide synthases (NOSs), has a variety of physiological functions. It acts as a messenger molecule regulating blood vessel dilatation and neuronal plasticity (1,2), and serves as a neuromodulator in the processing of nociceptive (3,4) and proprioceptive stimuli (5,6). Constitutive NOS (cNOS), activated by the increase of cytosolic calcium under some pathological conditions, releases relatively low levels of NO over several minutes (7), while inducible NOS (iNOS) is expressed after the stimulation of immunological or inflammatory reactions and produces large amounts of NO for extended periods of time (8). Under conditions of inappropriate activation, NO may act as a mediator of NMDA receptor-induced toxicity (9-11) providing the substrate for an abrupt formation of peroxynitrite. This process can cause irreversible damage resulting in a decrease or complete loss of neuronal viability. Neuronal and inducible NOS isoform inhibitors are therefore widely used to inhibit NO synthesis, thus controlling the contribution of the effect of NO on the overall response to axotomy and other neuropathies.

Peripheral nerve injury results in a dramatic NOS up-regulation in spinal (12) and peripheral (5,6,13-15) neurons, normally devoid of the enzyme, or expressing it at very low levels (16,17). In rabbits (12) and rats (18), sciatic nerve sectioning leads to a marked decrease in the number of small NOS immunoreactive (NOS-IR) neurons in superficial laminae, playing an important role in the sensation of pain (19). Strong up-regulation of NOS expression was detected...
in medium-sized neurons in laminae III and IV (12) and in motoneurons (16,17). This increase in enzyme activity seems to be the result of a loss of contact with post-synaptic targets due to nonpermissible or very poor environments for axonal regeneration (20). Studies performed with the injection of specific neurotrophic factors suggest that brain-derived neurotrophic factor (BDNF) and neurophin-4/5 (NT-4/5) promote the survival of axotomized retinal ganglion cells (21). Estévez et al (22) suggested the association of NO with the death of motoneurons cultured in the absence of brain-derived neurotrophic factor. Furthermore, the effective alleviation of neuronal loss was noted after spinal root avulsion in adult rats treated with neurotrophic factors. This effect was associated with the inhibition of neuronal NOS (nNOS) expression (23). In contrast, recent experiments performed with targeted disruption of genes in mice have shown that nNOS is necessary for the maintenance of spinal motoneurons (24,25).

In the present study we examined the effect of the cNOS inhibitor N-nitro-L-arginine (NNLA) and the iNOS inhibitor aminoguanidine on changes in NOS pools in a model of unilateral sciatic nerve transaction, with the aim of detecting the relative contribution of both inhibitors to NO production and to neuronal damage after peripheral axotomy. Our attention was focused on the dorsal part of the lower lumbar spinal cord, receiving sensory inputs from the sciatic nerve through sensitive neurons localized in respective dorsal root ganglia, and on motor neurons of the sciatic nerve located in the ventral horn of L4-L6 segments. The lower lumbar (L4-L6) spinal cord was processed for immunocytochemical detection of neuronal and inducible NOS immunoreactivity, both quantified by densitometric analysis. Radioassay detection was used to determine Ca²⁺-dependent and Ca²⁺-independent NOS activity.

Materials and methods

Surgical procedure. Forty rabbits of both sexes weighing 2.5-3.5 kg were anesthetized with a mixture of ketamine and xylazine (100 mg/kg and 15 mg/kg b.w., i.m.) and artificially ventilated in a respirator with oxygen and nitrous oxide (Anemat N8 Chirana, Czech Republic). Experimental protocols were approved by the Institute of Neurobiology Animal Care Committee. All experiments conformed to the National Institutes of Health Guide for the Care and Use of Laboratory Animals. Peripheral neuropathy was induced by unilateral sciatic nerve transaction, with the aim of detecting the relative contribution of both inhibitors to NO production and to neuronal damage after peripheral axotomy. Our attention was focused on the dorsal part of the lower lumbar spinal cord, receiving sensory inputs from the sciatic nerve through sensitive neurons localized in respective dorsal root ganglia, and on motor neurons of the sciatic nerve located in the ventral horn of L4-L6 segments. The lower lumbar (L4-L6) spinal cord was processed for immunocytochemical detection of neuronal and inducible NOS immunoreactivity, both quantified by densitometric analysis. Radioassay detection was used to determine Ca²⁺-dependent and Ca²⁺-independent NOS activity.

NOS immunohistochemistry. Fourteen days after unilateral sciatic nerve transaction, the animals were deeply anesthetized with thioental (50 mg/kg, i.v.), perfused intracardially with heparinized saline and subsequently with freshly prepared 4% paraformaldehyde in 0.1 M phosphate-buffered saline (PBS; pH 7.4, Sigma). The spinal cord from each animal was removed and post-fixed in the same fixative for 24 h, then dissected into L4-L6 segments and cryoprotected in PBS containing sucrose (30%). One day at a dose of 100 mg/kg b.w. for 4 and 12 days. Non-treated animals subjected to spinal cord transection were used for comparison.

Sample dissection for biochemical analyses. Two weeks following axotomy, rabbits were re-anesthetized. The backbone (segments L4-L6) was excised, the spinal cord was quickly extruded into ice-cold isotonic saline, cleaned from envelopes and carefully frozen in liquid nitrogen. The right side of the removed spinal cord was marked with a felt-tip pen to identify the right (ipsilateral) and left (contralateral) sides. For measurement of Ca²⁺-dependent NOS activity, L4-L6 segments were divided into the dorsal horn and dorsal column. Dorsal and ventral parts of these segments were processed for inducible NOS activity. All samples taken from the right and left halves of the L4-L6 segments were assayed separately.

Nitric oxide synthase radioassay. Both Ca²⁺-dependent and Ca²⁺-independent NOS activity were determined by the conversion of L-[¹⁴C]arginine to L-¹⁴C]citrulline according to the method of Breder and Snyder (26), with a slight modification by Strosznajder and Chalimoniuk (27). Frozen spinal cord samples were homogenized in 100-150 μl of ice-cold Tris-Cl buffer (10 mM, pH 7.4) containing 1 mM EDTA and protease inhibitor cocktail. Aliquots of the homogenate (200 μg/ml) were incubated for 45 min (37°C) with 10 μM L-¹⁴C]arginine (1 μCi), 1 mM NADPH, 1 μM calmodulin in a 50 mM HEPES buffer (pH 7.4) containing 1 mM dithiothreitol (DTT), 1 mM ethylenediaminetetraacetic acid (EDTA), 100 μM flavin mononucleotide (FMN), 100 μM flavin adenine dinucleotide (FAD), 2 mM CaCl₂, and 15 μM tetrahydrobiopterin (H₄B), in a final volume of 300 μl. iNOS activity was evaluated in the absence of CaCl₂ in the mixture medium. The reaction was stopped by the addition of 1 ml of ice-cold 100 mM HEPES buffer (pH 5.5) containing 10 mM EDTA. Samples were applied to a Dowex AG 50W-X8 cationic-exchange column (Na⁺ form) in order to remove the L-¹⁴C]arginine. The columns were washed with 2 ml of deionized water to elute the L-¹⁴C]citrulline. Samples were centrifuged at 1000 x g for 5 min and aliquots (0.5 ml) of supernatant fractions were mixed with 5 ml of Bray’s fluid into scintillation vials and then counted in a Beckman LS-3801 spectrometer. Cpm’s were converted to dpm’s using [¹⁴C]-quenched standards. Levels of [¹⁴C]citrulline were computed after subtracting the blank which represented nonspecific radioactivity in the absence of enzyme activity. Protein determination was performed using a Bradford assay (28). The results from the analyses were expressed as pmol/mg protein.
later 30 serial sections (40 μm thick) were cut with a freezing microtome from each segment studied. Spinal cord sections taken from animals subjected to sciatic nerve transection and NNLA treatment were processed for nNOS immunohistochemistry, while those taken from animals with sciatic nerve transection and aminoguanidine treatment were processed for iNOS immunohistochemistry. Free-floating tissue sections were pre-treated with 0.3% H₂O₂ in PBS for 30 min, then washed and blocked with 10% normal goat serum (Vector Laboratories, Burlington, CA, Product no. Q0407) for 2 h. The spinal cord sections used for nNOS-IR processing were incubated in polyclonal sheep-nNOS-antiserum, 1:500 and for determination of iNOS-IR in polyclonal rabbit-iNOS-antiserum (Sigma), 1:3000 dilution with 0.3% Triton X-100 in PBS overnight at 4°C with gentle agitation. After several washes in PBS, the sections were incubated with biotinylated anti-sheep and anti-rabbit secondary antibody 1:200 (Vector Laboratories) for 2 h, rinsed in PBS and reacted with avidin biotin reagents 1:100 for 1 h at room temperature. After three washes in PBS, the sections were developed in diaminobenzidine-tetrahydrochloride (DAB) solution containing H₂O₂ in PBS for 2-4 min. The sections were washed in distilled water, mounted on Colorfrost/Plus Microscope slides (Fisher Scientific, USA), air-dried and dehydrated with graded alcohol (50-100%) followed by xylene and coverslipped with Entellan. On a few sections the primary nNOS and iNOS antibodies were omitted from the staining procedures, so that no nNOS and iNOS positive cell bodies and axons were detected.

Densitometric analysis. Densitometric analysis of iNOS immunoreactivity (iNOS-IR) was performed on a PC using the UTHSCSA Image Tool program enabling the reliable detection of subtle differences in the ventrolateral portion of

![Figure 1. Representative light microphotographs showing neuronal nitric oxide synthase immunoreactivity (nNOS-IR) in the dorsal horn (A-E) and dorsal column (F and G).](image-url)
the ventral horn and in α-motoneurons of L4-L6 segments. The areas of interest were outlined by the operator and then the program calculated the average optical density of the pixels contained within the boundaries of each outlined area using a 256-unit gray scale (0, black; 256, white). The optical density of iNOS-IR staining is displayed as a two-dimensional densitogram. The value along the vertical y-axis gives the relative number of pixels as the smallest elements of an image that can be individually displayed, ranging in values from 0 to 256. Densitometric patterns resulting from iNOS immunocytochemical processing of spinal cord sections may display a variety of appearances depending on the site and intensity of iNOS staining, e.g. intensely stained somata are monitored as large, highly characteristic black areas commonly located close to value zero or in the left third of the densitogram on the horizontal x-axis, displaying variable height of the spikes depending on the extent of dark or dark-brown areas under study. The high-discrimination performance of the UTHSCSA Image Tool program allows measurement of the background optical density occurring in a given area.

Statistical analysis. The results of Ca2+-dependent and iNOS activities were statistically evaluated using ANOVA as well as the Tukey-Kramer test, and are presented as the means ± SEM.

Results

nNOS-IR and Ca\(^{2+}\)-dependent NOS activity in the dorsal horn and dorsal column of L4-L6 segments after unilateral sciatic nerve transection and NNLA treatment. Our previous study revealed a marked increase in Ca\(^{2+}\)-dependent NOS activity in the dorsal horn (125%) and dorsal column (177%) after sciatic nerve transection. Simultaneously, the number of nNOS-IR neurons was significantly modified in the dorsal horn (12). In the present study we performed immunohistochemistry to examine the expression of nNOS-IR, and radioassay detection for the determination of Ca\(^{2+}\)-dependent NOS activity in the dorsal part of the L4-L6 segments after unilateral sciatic nerve transection and NNLA treatment. Two weeks after peripheral axotomy, nNOS-IR was distributed almost homogeneously in both medial and lateral parts of the superficial dorsal horn on the contralateral side. We noted normal staining in laminae I and II and quite weak staining in laminae III and IV (Fig. 1B). Increased density of fiber-like and punctate non-somatic nNOS staining was found mostly in the medial part of laminae I-IV on the ipsilateral side of the sciatic nerve transection (Fig. 1A). In the white matter, peripheral axotomy caused increased density of axonal nNOS staining in the ipsilateral dorsal column. Clear enhancement of nNOS-IR was visible around the dorsomedial part of the dorsal horn (Fig. 1A). On the contralateral side, nNOS immunoreactive axons were distributed only randomly (Fig. 1B).

After NNLA treatment, both nNOS-IR and calcium-dependent NOS activity were substantially reduced in the dorsal horn (Figs. 1C-E, and 2A). However, we did not observe significant differences between the contralateral and ipsilateral sides in the density of immunocytochemical detection of nNOS, or in calcium-dependent NOS activity assessed by radioassay. NNLA treatment reduced the nNOS-immunoreactivity in the middle portion of the dorsal column (Fig. 1F). In the basal portion we noted a complete loss of nNOS-IR axons on both sides of the injury (Fig. 1G). These findings were accompanied by a significant decrease in enzyme activity in the dorsal column on the ipsilateral side (Fig. 2B).

Our results showed that two weeks after unilateral sciatic nerve transection, the expression of nNOS increased in the dorsal part of the spinal cord on the ipsilateral side, and that treatment with the nNOS inhibitor NNLA dosed at 20 mg/b.w. for 12 days effectively reduced the neuronal isoform of NOS in the dorsal horn and in the dorsal column of lower lumbar segments.

The effect of aminoguanidine on changes in iNOS-IR and Ca\(^{2+}\)-independent NOS activity in the dorsal and ventral parts of L4-L6 segments after sciatic nerve transection. After peripheral axotomy and 14 days of survival the density of iNOS-IR was up-regulated in large α-motoneurons and in their primary dendrites on the side of the injury (Fig. 3D and E). The densitograms of outlined iNOS-IR α-motoneurons show the optical density with black at zero and white at 256...
Considering the location of the densitograms on the gray scale, the intensity of iNOS-IR seems to be lower on the contralateral side, and it appears that α-motoneurons are more intensely stained on the ipsilateral side. When the enzyme activity was measured by radioassay detection, a marked increase in iNOS activity was noted on the side of the injury in both the dorsal and ventral parts of L4-L6 segments (Fig. 4).

When experimental animals were treated with amino-guanidine for 4 days, the distribution density of the immunohistochemical reaction was very heterogeneous. On the side of the injury, increased iNOS positivity was found in a group of α-motoneurons along with axons located not only inside the ventral horn, but also passing through the ventral column (Fig. 5A and B). An unexpected finding was the occurrence of bouton-like iNOS-IR structures (ranging between 5 and 12-14 μm), often closely opposing α-motoneurons. The most significant sign of iNOS-immunopositivity was quite dark immunostaining of the intragriseal portion of iNOS-IR axons before they leave the ventral horn and enter the white matter columns. Some α-motoneurons were without iNOS-IR. The treatment of animals with aminoguanidine, dosed at 100 mg/b.w. for 4 days did not noticeably influence iNOS activity in the dorsal and ventral parts of L4-L6 segments (Fig. 4). Enzyme activity decreased significantly in the group of animals treated with aminoguanidine for 12 days. In the ventral part, iNOS activity decreased below the control value (Fig. 4). Two critical signs were noted in the ventral horn of L5-L6 segments after treatment of animals with aminoguanidine for 12 days (Fig. 6). On both sides, irrespective of axotomy, iNOS immunolabelling was significantly suppressed and, more importantly, on the operated side, small necrotic, sometimes confluent foci were identified in the ventrolateral portion of the ventral horn. No α-motoneurons could be identified in the ventrolateral ventral horn. However, the core of the ventral horn and intermediate zone were free of necrotic foci.

Discussion

Using radioassay and immunocytochemistry we demonstrated that unilateral sciatic nerve transection increased Ca^{2+}-dependent NOS activity and the expression of nNOS in the ipsilateral dorsal part of lower lumbar spinal cord segments, and that the treatment of animals with NNLA dosed at 20 mg/b.w. for 12 days effectively reduced both the enzyme activity and the nNOS-IR in the ipsilateral dorsal horn and dorsal column. We did not observe differences in

Figure 3. Microphotographs (A, B, D and E) and densitograms (C and F) showing inducible nitric oxide synthase immunoreactivity (iNOS-IR) in the ventral horn of the L6 segment on both contralateral (A,B,C) and ipsilateral (D, E and F) sides of the spinal cord of animals subjected to sciatic nerve transection and survival for 14 days. Transverse sections cut at the L6 level depict the location of iNOS-immunoreactive (IR) α-motoneurons on contralateral (A) and ipsilateral (D) sides. Microphotographs (B and E) depict boxed areas in A and D. Higher density of iNOS-IR is seen in α-motoneurons on the ipsilateral side (E). Densitograms (C and F) show the density of the outlined α-motoneurons in B and E. Lower density of iNOS-IR staining (129±18.46) is seen in α-motoneurons on the contralateral side (C).
the density of nNOS immunostaining of lower lumbar motoneurons on contralateral and ipsilateral sides after peripheral axotomy, nor after NNLA treatment. Immunocytochemical analysis disclosed up-regulation of iNOS-IR staining after peripheral axotomy in α-motoneurons localized in the ventrolateral part of the ipsilateral ventral horn. The changes in iNOS activity and iNOS expression were not corrected by aminoguanidine treatment for 4 days. However, the iNOS-IR and Ca\(^{2+}\)-independent enzyme activity decreased significantly in α-motoneurons when the animals were treated with aminoguanidine for 12 days.

The participation of NO in abnormal neural activity and pain behaviour (3) has been indicated previously. However, the role of NO and/or some neuropeptides that might modulate spinal microcircuits (29-35) is not clearly defined. The enhancement of Ca\(^{2+}\)-dependent NOS activity found after nerve injury in the ipsilateral dorsal part of the spinal cord seems to be associated with an increase in total NOS activity (36) and nNOS-IR in the DRG corresponding to the ipsilateral spinal nerve (5,6,12-15,18). This finding is also consistent with previously reported ipsilateral increase in the number of nNOS-immunopositive fibers in laminae I and II, and higher nNOS-IR in large multipolar cell profiles in laminae III and IV in L4-L6 segments (12). In addition, the present data clearly show unilateral enhancement of nNOS-IR in thick primary myelinated Aβ dorsal root afferents passing near the dorsomedial border of the dorsal horn within the dorsal funiculus and entering the gray matter underneath the substantia gelatinosa. There was no evidence of higher nNOS expression in axotomized α-motoneurons, nor of more numerous nNOS-IR neurons on the injured side two weeks after axotomy, although the counting of immunolabelled α-motoneurons was not attempted. These results are in agreement with previous reports showing that motoneurons remained unstained or weakly stained for nNOS after peripheral transections/ligations at all times studied (15,18,25,37). It is generally believed that interruption of the axonal transport of neurotrophic factors from the periphery to the cell bodies plays a key role in the degenerative reaction of motor neurons and DRG cells (38,39). Terenghi (40) reported that axotomized motoneurons may receive neurotrophic factors from Schwann cells surrounding the peripheral axons. The Schwann cells and macrophages provide support for removing myelin debris and releasing growth factors and adhesion molecules required in regeneration (15,40-44). Such peripheral support may help motoneurons to survive longer after axotomy, long enough to allow the induction of the Mn isoform of SOD (superoxide dismutase), which would counteract the oxidative stress induced by peripheral axotomy (45).

Since there is evidence that the viability of axotomized neurons can be enhanced by inhibitors of nitric oxide synthesis (46-48), several approaches were used to determine which isoform of NOS may be implicated in the enhancement of NO production after nerve injuries. Keilhoff et al (25) demonstrated that the profiles of degenerated interneurons in laminae I and II, and partly motor neurons,
were more prominent in nNOS-KO mice 6 weeks after axotomy than in iNOS-KO mice. Watabe and co-workers (49) demonstrated that the severity of neuronal loss after peripheral lesion can be alleviated by blocking nNOS expression, and Wu and Li (50) reported the prevention of motoneuron death by the alteration of nNOS expression following spinal root avulsion. Martin et al (51) examined motor neuron survival in mice with different NOS genotypes at 7, 14 or 21 days after unilateral sciatic nerve avulsion, and reported that knock-out of nNOS and iNOS protected motor neurons against apoptosis at 21 days, but mice deficient in eNOS were not protected. In our experimental model, iNOS-IR was reduced in ipsilateral motor neurons compared with control contralateral motoneurons in the rat lumbar spinal cord at 5 days after nerve avulsion. Our results suggest that repeated injections of Ca²⁺-dependent NOS inhibitor...
dosed at 20 mg/b.w. were effective in decreasing both the enzyme activity and the density of nNOS immunostaining in the dorsal and ventral parts of the spinal cord. iNOS, typically induced by cytokines and endotoxins, is thought to represent a physiological response of the immune system to tissue damage (52). The treatment of animals with the iNOS inhibitor aminoguanidine, dosed at 100 mg/b.w. for 4 days did not decrease iNOS immunolabelling, nor did it influence neuronal survival. This finding was unexpected considering that iNOS expression is believed to be responsible for the majority of post-traumatic NO-mediated neuronal death in the central nervous system (53). We detected clear iNOS immunolabelling in α-motoneurones including fibers in laminae VII and VIII. Occasionally some α-motoneurones responding with high iNOS-IR were seen in a juxtagriseal position on the injured side. The occurrence of a pericellular halo was noted on some sections occurring around large α-motoneurones. We suppose that this was a result of immunohistochemical processing as this is commonly seen in neurons found in the first phase of retrograde reaction (edema). In the group of animals treated with aminoguanidine for 12 days we noted marked decrease in Ca++-independent NOS activity on the side of the injury. The suppression of NO formation by the iNOS inhibitor for a longer period induced degeneration of α-motoneurones and created small necrotic foci in the ventrolateral portion of the ventral horn. These results suggest that NO produced by iNOS may regulate the death of axotomized motor neurons in a time-dependent manner. It seems possible that the formation of NO by cNOS early after injury, and by its increased formation via iNOS later on in the affected spinal cord regions, may accelerate neurodestructive events and lead to nitrosylation of proteins, binding to the hem or iron sulfur sites of regulatory proteins (54), as well as to DNA damage and the formation of peroxynitrites (51).

Although NO synthesized by both cNOS and iNOS is toxic to axotomized neurons, cNOS inhibition by NNLA seems to be more neuroprotective than the specific long-lasting inhibition of iNOS by aminoguanidine treatment. The results of the present study provide evidence of an important role of nitric oxide contributing to peripheral nerve axotomy death following injury. Since a strong blockade of iNOS activity markedly contributed to the damage of motor neurons at later stages, the mechanism of such regulation should be clarified by taking into consideration apoptotic proteins and/or the formation of peroxynitrite.

Acknowledgements

The authors thank Mrs. M. Synakova, Mrs. A. Kosova and Mr. D. Krokavec for their excellent technical assistance. This experimental work was supported by VEGA Grants No. 2/5134/25 and 2/0015/08 from the SAS and partly by APVT 51-013002, APVV 0314-06 and CEKVY 2007.

References

30. Shehab SA and Atkinson ME: Vasoactive intestinal polypeptide increases in areas of the dorsal horn of the spinal cord from which other neuropeptides are depleted following peripheral axotomy. Exp Brain Res 62: 422-430, 1986.