Pyrogallol inhibits the growth of gastric cancer SNU-484 cells via induction of apoptosis

WOO HYUN PARK1, MEE NA PARK2, YONG HWAN HAN1 and SANG WOO KIM2

Departments of 1Physiology, 2Internal Medicine, Medical School, Research Institute of Clinical Medicine, Chonbuk National University, JeonJu 561-180, Korea

Received March 24, 2008; Accepted May 29, 2008

DOI: 10.3892/ijmm_00000018

Abstract. Pyrogallol (PG) is a polyphenol compound and is known to be an O2•- generator. We evaluated the effects of PG on the growth of human gastric cancer SNU-484 cells in relation to the cell cycle and apoptosis. Dose-dependent inhibition of cell growth was observed in SNU-484 cells with an IC50 of ~50 μM following treatment with PG for 72 h. DNA flow cytometric analysis indicated that treatment with PG generally did not induce the specific cell cycle phase arrest. Treatment with 50 μM PG induced apoptosis ~20%, as evidenced by sub-G1 cells and annexin V-staining cells. Treatment with PG also induced the loss of mitochondrial membrane potential (ΔΨm) in SNU-484 cells. The intracellular reactive oxygen species (ROS) levels including O2•- were significantly increased in PG-treated cells. Furthermore, the depletion of the intracellular glutathione (GSH) content was observed in cells treated with 50 or 80 μM PG. In conclusion, PG inhibited the growth of human gastric cancer SNU-484 cells by inducing cell cycle arrest as well as triggering apoptosis. The changes in ROS and GSH by PG were closely related to apoptosis in SNU-484 cells.

Introduction

Pyrogallol (PG) is a polyphenol compound derived from green tea or garlic (1). The compound as an O2•- generator has been used to investigate the role of O2•- in the biological system (2,3). Reactive oxygen species (ROS) including O2•- are formed as by-products of mitochondrial respiration or oxidases such as nicotine adenine diphosphate (NADPH) oxidase, xanthine oxidase (XO) and arachidonic acid oxygenases (4). A change in the redox state of the tissue implies a change in ROS generation or metabolism. Principal metabolic pathways include superoxide dismutase (SOD), which is expressed as extracellular, intracellular and mitochondrial isoforms. These isoforms metabolize O2•- to H2O2. Further metabolism by peroxidases that include catalase and glutathione (GSH) peroxidase yields O2 and H2O (5). Cells possess antioxidant systems to control the redox state, which is important for their survival. Excessive production of ROS gives rise to the activation of events that lead to death and survival in several types of cells (6). PG also induces O2•- mediated death of several types of cell such as mesangial (7), human lymphoma (2), human glioma (8) and As4.1 juxtaglomerular cells (9).

The cell cycle in eukaryotes is regulated by cyclin-dependent kinases (CDKs). The cyclins, members of the cell cycle regulators, bind to and activate CDKs. Sequential formation, activation and subsequent inactivation of CDKs and cyclins are critical for control of the cell cycle (10). During the last decades it has been clear that less traditional factors as well as traditional cell cycle regulators such as nutrients, growth factors and hormones may have an important impact on cell cycle regulation. Of the former the ROS including O2•- were commonly thought to be merely toxic to cells, leading to cell death as the ultimate consequence. Evidence is now accumulating that ROS might also play a role as signaling molecules (11), and as such they may have a role in cell cycle progression.

Gastric cancer is the second leading cause of death from cancer worldwide and in many Asian countries, such as Korea, China and Japan (12). Various novel therapeutic strategies are currently under consideration, as the clinical use of cytotoxic drugs is limited due to intrinsic or acquired resistance and toxicity. Studies of the molecular mechanisms of cytotoxic drug action have shed light on the treatment of gastric cancer, and novel agents that target specific...
intracellular pathways related to the distinctive properties of cancer cells continue to be developed.

The role of $O_2^•$ produced by PG in gastric cancer cell death has not been evaluated. In the present study, we evaluated the effects of PG on the growth of human gastric cancer SNU-484 cells in relation to the cell cycle and apoptosis.

Materials and methods

Cell culture. The human gastric cancer SNU-484 cell line was obtained from the Korean Cell Line Bank (KCLB) and was maintained in a humidified incubator containing 5% CO$_2$ at 37°C. SNU-484 cells were cultured in RPMI-1640 supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin (Gibco BRL, Grand Island, NY). Cells were routinely grown in 100-mm plastic tissue culture dishes (Nunc, Roskilde, Denmark) and harvested with a solution of trypsin-EDTA while in a logarithmic phase of growth. Cells were maintained in these culture conditions for all experiments.

Reagents. PG was purchased from Sigma-Aldrich Chemical Co. (St. Louis, MO). PG was dissolved in H$_2$O at 1x10$^{-1}$ M as a stock solution. All of the stock solutions were wrapped in foil and kept at 4 or -20°C.

Cell growth assay. The effect of PG on the growth of SNU-484 cells were determined by measuring 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) dye absorbance of living cells as described previously (13). In brief, cells were seeded in a 96-well microtiter plate for an MTT assay. To achieve solubilization of the formazan crystals yielding 2,7-dichlorofluorescein (DCF), a fluorescent probe dye, 2',7'-dichlorodihydrofluorescein diacetate (H$_2$DCFDA) (Invitrogen Molecular Probes, Eugene, OR). Cells were then incubated with the designated doses of PG for 72 h. Cells were washed twice with PBS and then incubated with PI (10 μg/ml) with simultaneous treatment of RNase at 37°C for 30 min. The percentages of cells in different phases of the cell cycle or having sub-G1 DNA content were measured with a FACStar flow cytometer and analyzed using lysis II and CellFit software (Becton Dickinson) or ModFit software (Verity Software House, Inc., ME).

Annexin V staining. Apoptosis was determined by staining cells with annexin V-fluorescein isothiocyanate (FITC) (Ex/Em = 488 nm/519 nm), since annexin V can be used to identify the externalization of phosphatidylserine during the progression of apoptosis and, therefore, can detect cells during early phases of apoptosis. In brief, cells were incubated with the designated doses of PG for 72 h. Cells were washed twice with cold PBS and then resuspended in 500 μl of binding buffer (10 mM HEPES/NaOH pH 7.4, 140 mM NaCl, 2.5 mM CaCl$_2$) at a concentration of 1x106 cells/ml. Annexin V-FITC (5 μl) (Pharmingen, San Diego, CA) was then added to the cells, which were analyzed using a FACStar flow cytometer.

Measurement of mitochondrial membrane potential ($\Delta \Psi_m$). The mitochondrial membrane was monitored using the Rhodamine 123 fluorescent dye (Ex/Em = 485 nm/535 nm), a cell-permeable cationic dye, which preferentially enters mitochondria based on the highly negative mitochondrial membrane potential ($\Delta \Psi_m$). Depolarization of mitochondrial membrane potential ($\Delta \Psi_m$) results in the loss of Rhodamine 123 from the mitochondria and a decrease in intracellular fluorescence. In brief, cells were incubated with the designated doses of PG for 72 h. Cells were washed twice with PBS and incubated with Rhodamine 123 (0.1 μg/ml; Sigma) at 37°C for 30 min. Rhodamine 123 staining intensity was determined by flow cytometry of a FACStar flow cytometer.

Western blot analysis. Cells were incubated with the designated doses of PG for 72 h. The cells were then washed in PBS and suspended in 5 Vol of lysis buffer [20 mM HEPES (pH 7.9), 20% glycerol, 200 mM KCl, 0.5 mM EDTA, 0.5% NP40, 0.5 mM DTT and 1% protease inhibitor cocktail (from Sigma)]. The lysates were then collected and stored at -20°C until further use. The supernatant protein concentration was determined by the Bradford method. Supernatant samples containing 40 μg of total protein were
resolved by 8, 12.5, or 15% SDS-PAGE gel depending on the target protein sizes and were transferred onto an Immobilon-P PVDF membrane (Millipore, MA) by electroblotting. The samples were then probed with anti-p53, anti-Bax, anti-Bcl-2, anti-caspase-3, anti-PARP and anti-β-actin (Santa Cruz Biotechnology, Santa Cruz, CA). The membranes were incubated with horseradish peroxidase-conjugated secondary antibodies. The membrane blots were developed by using the ECL kit (Amersham, Arlington Heights, IL).

Detection of intracellular glutathione (GSH). Cellular GSH levels were analyzed using 5-chloromethylfluorescein diacetate (CMFDA, Molecular Probes) (Ex/Em = 522 nm/595 nm). CMFDA is a useful, membrane-permeable dye for determining levels of intracellular glutathione (15). In brief, cells were incubated with PG for 72 h. Cells were then washed with PBS and incubated with 5 μM CMFDA at 37°C for 30 min according to the manufacturer’s instructions. Cytoplasmic esterases convert nonfluorescent CMFDA to fluorescent 5-chloromethylfluorescein, which can then react with the glutathione. CMF fluorescence staining intensity was determined using a FACStar flow cytometer and calculated by CellQuest software. For each sample, 5,000 or 10,000 events were collected.

Statistical analysis. Microsoft Excel or Instat software (GraphPad Prism4, San Diego, CA) was used to analyze the data. The Student’s t-test or one-way analysis of variance (ANOVA) was used for parametric data. Statistical significance was defined as p<0.05.

Results

Effects of PG on the growth of SNU-484 cells in vitro. We examined the effect of PG on the growth of SNU-484 cells by an MTT assay. Dose-dependent inhibition of cell growth was observed in SNU-484 cells with an IC₅₀ of ~50 μM following treatment with PG for 72 h (Fig. 1). The cell growth was completely inhibited at 80 μM of PG (Fig. 1).

Effects of PG on cell cycle distribution in SNU-484 cells. We examined the effect of PG on the cell cycle in SNU-484 cells. As shown in Fig. 2, DNA flow cytometric analysis indicated that treatment with PG generally did not induce the specific cell cycle phase arrest at 72 h.

Effects of PG on apoptosis and mitochondrial membrane potential (ΔΨₘ) in SNU-484 cells. Next, we determined whether PG induces apoptosis in SNU-484 cells. As shown in Fig. 3A, treatment with 50-80 μM PG increased the number of sub-G1 cells at 72 h. The percentage of sub-G1 SNU-484 cells was elevated to ~25% for 72 h following treatment with 80 μM PG (Fig. 3A). To further confirm and evaluate the induction of apoptosis, we stained SNU-484 cells with annexin V. Similar to the percentages of sub-G1 phase cells assessed by flow cytometry, the proportion of annexin V-stained cells in the PG-treated cells was markedly increased in a dose-dependent manner (Fig. 3B), which confirms that PG-induced SNU-484 cell death occurred via apoptosis. In addition, treatment with 50-80 μM PG significantly induced the loss of mitochondrial membrane potential (ΔΨₘ) in SNU-484 cells for 72 h (Fig. 3C).

Examination of Bcl-2 and Bax regulation during the PG-induced apoptosis revealed that Bcl-2 protein was decreased except for treatment with the dose of 5 μM PG (Fig. 3D). Bax was also decreased except for treatment with the dose of 5 μM PG (Fig. 3D). The expression of Bcl2 and Bax proteins in 80 μM PG-treated cells was not determined due to the degradation of total proteins. In addition, p53 protein, known to be related to apoptosis, was not altered at any concentration of PG (Fig. 3D). Next, we examined whether caspase-3 was activated during the induction of apoptosis by PG. The level of procaspase-3 (32 kDa precursor) was significantly reduced in 50 μM PG-treated cells compared with the level of the control cells (Fig. 3E), which suggests that the activation of caspase-3 occurred in 50 μM PG-treated cells. Since poly(ADP-ribose) polymerase (PARP) protein is known to be a major substrate for executed caspases and a hallmark of apoptosis, Western blot analysis of PARP expression was performed. The data showed that the intact 116 kDa PARP had completely disappeared in 50 μM PG-treated SNU-484 cells, and the cleavage form of PARP had appeared in 30 or 50 μM PG-treated SNU-484 cells (Fig. 3E).
Effects of PG on intracellular ROS and GSH content in SNU-484 cells. To assess the production of the intracellular general ROS in PG-treated SNU-484 cells, we used H2DCFDA fluorescent dye. As shown in Fig. 4A, the intracellular ROS levels were significantly increased in SNU-484 cells treated with 10-80 μM PG for 72 h (Fig. 4A). In addition, red fluorescence derived from DHE, which reflected O2•− accumulation, was significantly increased in SNU-484 cells treated with 30-80 μM PG for 72 h (Fig. 4B).

Cellular GSH has been shown to be crucial in regulating cell proliferation, cell cycle progression, and apoptosis (16). Therefore, we analyzed the changes in GSH levels in SNU-484 cells using CMF fluorescence. As shown in Fig. 4C, the depletion of the intracellular GSH content was observed in cells treated with 50 or 80 μM PG. However, the levels of GSH content were significantly increased in PG-treated SNU-484 cells treated with 30-80 μM PG for 72 h (Fig. 4D). Significantly, the GSH content in 80 μM PG-treated cells was not significantly altered (Fig. 4D).

Discussion

In the present study, we investigated the effects of PG on the growth of human gastric cancer SNU-484 cells in relation to the cell cycle arrest and apoptosis. Dose-dependent inhibition of cell growth was observed in SNU-484 cells with an IC50 of ~50 μM following treatment with PG for 72 h. To explain the mechanism of cell growth inhibition by PG in relation to cell cycle change, we conducted cell cycle analysis in PG-treated cells. Treatment with PG generally did not induce specific cell cycle phase arrest at 72 h. In fact, treatment with 50 μM PG inhibited the growth of SNU-484 cells by ~50%, but slightly induced cell death by ~20% in view of sub-G1 cells and annexin V-stained cells. Therefore, PG presumably induced arrest during all phases of the cell cycle. Nonspecific cell cycle arrest can be considered as a pathway to suppress the growth of SNU-484 cells. We also observed that PG induces a G2 phase arrest in As4.1 juxtaglomerular cells (17) and also induces the nonspecific cell cycle arrest in HeLa cells (18). These results suggest that the specificity of cell cycle arrest by PG depends on differences in cell types.

According to our results, treatment with PG induced apoptosis in SNU-484 cells. To gain insight into the molecular mechanism involved in apoptosis caused by PG, expression of the apoptosis-related proteins and changes in mitochondrial transmembrane potential (ΔΨm) were assessed in SNU-484 cells. We predicted that the Bax to Bcl-2 ratio would be increased, since many apoptotic agents increase Bax protein and/or decrease Bcl-2 protein during the apoptotic process in their target cells. However, the expression patterns of Bcl-2 and Bax were similar in the different PG-treated SNU-484 cells. In particular, SNU-484 cells treated with 50 μM PG did not up-regulate the proapoptotic protein Bax. These data suggest that Bcl-2 as well as Bax were not tightly involved in the induction of
apoptosis by PG. P53 induces cell cycle arrest or apoptosis in response to DNA damage and regulates Bax and Bcl-2 protein expression (19). In our experiment, the expression of p53 protein was not altered at any concentration of PG, implying that the changes in Bax or Bcl-2 proteins were not dependent on the p53 protein level, and apoptosis triggered by PG was also not p53-dependent. It is known that the collapse of mitochondrial membrane potential (ΔΨm) occurs during apoptosis (20). Correspondingly, treatment with 50 or 80 μM PG induced the loss of mitochondrial membrane potential (ΔΨm) in SNU-484 cells. Notably there were similar numbers of annexin V-positive-stained and Rhodamine 123 negative-stained cells in 50 or 80 μM PG-treated SNU-484 cells, suggesting that apoptosis by PG is tightly related to or dependent on the loss of mitochondrial membrane potential (ΔΨm).

Cytochrome c in cytosol forms an apoptosome that is composed of Aaf-1 and procaspase-9, resulting in activation of caspase-9. Caspase-9 activates the effector procaspases, including procaspase-3, to process apoptosis (21). Correspondingly, caspase-3 was activated by 50 μM PG, and PARP protein was degraded in 30 or 50 μM PG-treated SNU-484 cells. To note, 30 μM PG-treated SNU-484 cells did not show activation of caspase-3, as indirectly evidenced by lack of disappearance of procaspase-3 protein, but showed the cleavage form of PARP. This finding suggests that other executor caspases such as caspase-6 or caspase-7 are additionally required for the full induction of apoptosis by PG.

PG can disturb the natural oxidation and reduction equilibrium in cells. Increased patterns in O2•− levels by PG were reported in pheochromocytoma PC12 cells (3), neuroblastoma SH-SY5Y cells (22), lung cancer Calu-6 cells (23) and juxtaglomerular As4.1 cells (9). These findings suggest that the apoptotic effects of PG are generally correlated with changes in intracellular O2•− levels. Likewise, the intracellular ROS levels including O2•− were significantly increased in SNU-484 cells treated with PG for 72 h, verifying that PG as a polyphenol compound is an O2•− generator (2,3). GSH, a main cell non-protein antioxidant, is able to clear away the O2•− and provide electrons for enzymes such as glutathione peroxidase, which reduce H2O2 to H2O (24). It has been reported that the intracellular GSH content has a decisive effect on anticancer drug-induced apoptosis, indicating that apoptotic effects are inversely proportional to GSH content (25). Likewise, our results demonstrated that treatment with 50 or 80 μM PG increased the number of GSH-depleted cells in SNU-484 cells. However, the intracellular GSH content was increased in 10-50 μM PG-treated SNU-484 cells. It is possible that SNU-484 cells increased the GSH content to compensate for the increased ROS levels by PG. In the case of 80 μM PG-treated SNU-484 cells, the strongly increased ROS levels presumably caused vital damages to the GSH redox system, consequently resulting in GSH deletion and cell death in SNU-484 cells. These results verify that the intracellular GSH levels as well as ROS levels are tightly related to PG-induced cell death.
In conclusion, PG inhibited the growth of human gastric cancer SNU-484 cells via inducing cell cycle arrest as well as triggering apoptosis. The changes in ROS and GSH by PG were closely related to apoptosis in SNU-484 cells. Our results suggest the possibility that PG is a candidate agent for the treatment of gastric cancer patients.

Acknowledgements

This research was supported by the Korean Research Foundation Grant funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (KRF-2007-331-E00064).

References