The estrogen 17β-estradiol and phytoestrogen genistein mediate differential effects on osteoblastic NF-κB activity

MASAYOSHI YAMAGUCHI and M. NEALE WEITZMANN

Division of Endocrinology and Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA 30322-0001, USA

Received October 20, 2008; Accepted December 3, 2008

DOI: 10.3892/ijmm_00000131

Abstract. Estrogen (17β-estradiol) and genistein, a phytoestrogen, are both endowed with anabolic activities on bone in vivo and stimulate osteoblastic differentiation and mineralization in vitro. However, the mechanisms by which these agents promote osteoblastic differentiation and bone anabolic responses are multifactorial and only partly understood. Recently, the NF-κB signal transduction pathway was implicated as a negative regulator of osteoblastic differentiation and suppression of this pathway leads to osteoblastic differentiation and mineralization in vitro. To examine whether estrogen and/or genistein regulate osteoblast differentiation by modulating the NF-κB pathway, we examined the effect of 17β-estradiol and genistein on basal and TNFα-stimulated NF-κB activity in the preosteoblastic cell line MC3T3. MC3T3 cells were transiently transfected with an NF-κB responsive luciferase reporter and cultured for 24 h with either vehicle, or physiological doses of 17β-estradiol (10^{-9} to 10^{-7} M), or genistein (10^{-4} to 10^{-3} M). Our data reveal that while 17β-estradiol may stimulate bone anabolism, in part, by antagonizing TNFα-induced NF-κB activation, but directly promotes NF-κB activity in MC3T3 cells. These data suggest important mechanistic differences in the mechanisms by which 17β-estradiol and genistein promote osteoblast differentiation.

Introduction

Many edible plants contain small quantities of diverse phytoestrogens that are believed to promote bone health. Phytoestrogen molecules can be divided into two major chemical classes: isoflavones and coumestans. The isoflavones are found predominantly in soybeans (Glycine max), whereas coumestans are produced primarily by clovers (genus Trifolium) and some legumes. These molecules function as antioxidants in plants, but in mammalian tissues act as agonists, or partial agonists, of estrogen receptors.

Isoflavones, including genistin and genistein, are present in soybeans at a comparatively high concentration. Genistin is hydrolyzed to genistein by β-glucosidase in the gastrointestinal system. Genistein was demonstrated to have an anabolic effect on bone metabolism of rats (6-8), suggesting a potential benefit in the prevention of osteoporosis (1-5). However, their mechanisms of action are poorly characterized.

Isolevans, including genistin and genistein, are present in soybeans at a comparatively high concentration. Genistin is hydrolyzed to genistein by β-glucosidase in the gastrointestinal system. Genistein was demonstrated to have an anabolic effect on bone metabolism of rats (6-8), suggesting a potential benefit in the prevention of osteoporosis (1-5). However, their mechanisms of action are poorly characterized.

iso

Correspondence to: Dr Masayoshi Yamaguchi, Division of Endocrinology and Metabolism and Lipids, Department of Medicine, Emory University School of Medicine, 101 Woodruff Circle, Atlanta, GA 30322-0001, USA

E-mail: yamamasa1155@yahoo.co.jp

Key words: genistein, 17β-estradiol, TNFα, NF-κB, osteoblast, bone formation
tiation in vitro, through suppression of TGFβ- and BMP-induced SMAD signal transduction, and that pharmacological suppression of NF-κB activation promotes osteoblastic differentiation and mineralization in vitro (19). Interestingly, genistein was reported to inhibit NF-κB activation in the macrophage cell line J774 (21) suggesting a potential mechanism for the capacity of genistein to promote osteoblastic differentiation. The 5 members of the mammalian NF-κB family RelA/p65, RelB, c-Rel, NF-κB1/p50, and NF-κB2/p52 are activated through one of two specific pathways, the canonical NF-κB pathway or an alternative pathway. In the canonical pathway, activation of the inhibitor of IκB kinase (IKK) complex leads to phosphorylation of the NF-κB-associated IκBα, catalyzing its ubiquitination and proteasomal degradation, and in the process releases active NF-κB dimers that translocate to the nucleus and enhance transcription of target genes. In the alternative NF-κB pathway, NF-κB-inducing kinase (NIK) and IKKα target p100 for proteolytic processing, thereby releasing active RelB-containing dimers (22).

In this study, we investigated whether 17β-estradiol and/or genistein modulate NF-κB activation in MC3T3 preosteoblastic cells. Our data reveal that although both 17β-estradiol and genistein augmented mineralization of MC3T3 cells, their actions on NF-κB activation under basal conditions and following TNFα-induction were completely different. While 17β-estradiol antagonized TNFα-induced NF-κB activation, genistein not only failed to prevent cytokine-induced NF-κB activation, but directly stimulated NF-κB activation in MC3T3 cells.

Materials and methods

Chemicals. α-Minimal essential medium (α-MEM) and antibiotics (penicillin and streptomycin) were purchased from Invitrogen (Carlsbad, CA). Fetal bovine serum (FBS) was from Hyclone (Logan, UT). All other reagents were purchased from the Sigma Chemical Company (St. Louis, MO), unless otherwise indicated. All water used was glass distilled.

Cell culture. The preosteoblastic cell line MC3T3-E1, clone 14 (MC3T3), was purchased from the American Type Culture Collection (Manassas, VA) and was previously described in detail (23). Cells were cultured at 37°C in a humidified 5% CO2 incubator in plastic dishes containing α-MEM supplemented with 10% FBS, 2 mM glutamine, 100 IU/ml penicillin, and 100 µg/ml streptomycin. Cells were passaged every 3 days using 0.2% trypsin plus 0.02% EDTA in Ca2+-/Mg2+-free phosphate-buffered saline (PBS).

Osteoblast differentiation assays and Alizarin Red-S staining. MC3T3 cells (1.0x10⁵ cells per well) were cultured for 72 h in α-MEM (1.0 ml/well) containing 10% FBS in 12-well dishes. Medium was aspirated and changed to mineralization medium (phenol Red-free α-MEM supplemented with 10% FBS, L-ascorbic acid (100 µg/ml) and 4 mM β-glycerophosphate as previously described (13,19). Cells were cultured with fresh medium every 3 days. At 28 days, cells were rinsed with PBS and calcium deposition was visualized by fixing the cells in 75% ethanol for 30 min at 4°C followed by staining with Alizarin Red-S (40 mM, pH 6.2) for 30 min at room temperature. Excess stain was removed by copious washing with distilled water.

NF-κB reporter constructs and luciferase assays. The NF-κB responsive reporter (pNF-κB-LUC) was purchased from BD Biosciences. Reporter plasmids (pNF-κB-LUC) or empty vector control (pGL3-Basic) were transfected into MC3T3 cells using Lipofectamine 2000 reagent (Invitrogen) as previously described (19). Briefly, MC3T3 cells (1.0x10⁵ cells/well) were cultured for 24 h in α-MEM, and then changed to α-MEM without FBS and antibiotics and transfected with pNF-κB-LUC reporter plasmid or empty vector. Five hours later the medium was changed to α-MEM containing 10% FBS plus antibiotics and cells were treated with vehicle or 17β-estradiol (10⁻⁹ or 10⁻⁸ M) or genistein (10⁻⁶ or 10⁻⁵ M), and/or TNFα (1 or 10 ng/ml), as indicated in the figures. The cells were further cultured for 24 h.

Luciferase activity was measured on a microplate luminometer (Turner Designs, Sunnyvale, CA, USA). Equal transfection efficiency was validated for all plasmids using Renilla luciferase reporter plasmid pRL-SV40, using the dual-luciferase assay system (Promega, Madison, WI).

Statistical analysis. Statistical significance was determined using GraphPad InStat version 3 for Windows XP (GraphPad Software). Multiple comparisons were performed by One-way ANOVA with Tukey-Kramer post test. P<0.05 was considered statistically significant. Data are presented as mean ± SD of 5 replicate wells and are representative of two or more independent experiments.

Results

Effect of 17β-estradiol and genistein on osteoblastic mineralization. MC3T3 cells were cultured with physiological concentrations of 17β-estradiol (10⁻⁹ or 10⁻⁸ M) or genistein (10⁻⁶ or 10⁻⁵ M) for 28 days and stained for calcium deposition with Alizarin Red-S. The data show (Fig. 1) that both 17β-estradiol and genistein had a stimulatory effect on MC3T3 mineralization in vitro. The magnitude of the increase in mineralization between genistein and 17β-estradiol is comparable.

17β-estradiol and genistein mediate differential effects on basal NF-κB activity in MC3T3 cells. As suppression of NF-κB is now established to promote MC3T3 mineralization (19), we speculated that one mechanism by which 17β-estradiol or genistein could stimulate osteoblastic mineralization is by downregulating NF-κB signal transduction. To investigate the action of 17β-estradiol and genistein on NF-κB activity, we transiently transfected MC3T3 cells with an NF-κB luciferase reporter driven by 6 tandem copies of the NF-κB consensus sequence, thus providing a direct measurement of activation for this pathway.

Our data reveal that while 17β-estradiol (10⁻⁹ to 10⁻⁷ M), had no effect on basal NF-κB activity in MC3T3 cells (Fig. 2A), genistein (10⁻⁶ or 10⁻⁵ M) significantly and dose-dependently stimulated NF-κB activity (Fig. 2B).
We previously reported that basal concentrations of endogenous TNFα potently lower osteoblastic bone formation in vivo, reducing maximum achievable peak bone mass, potentially through an NF-κB-dependent mechanism (19). We consequently investigated the actions of 17ß-estradiol and genistein on TNFα-stimulated NF-κB activity in MC3T3 cells. Culture with low-dose TNFα (1 ng/ml) stimulated NF-κB activity ~3 fold (Fig. 3A). This increase was significantly suppressed by physiological doses (10⁻⁸ and 10⁻⁷ M) of 17ß-estradiol (Fig. 3A).

We next investigated whether genistein augments or synergizes with low- (1 ng/ml) or high-dose (10 ng/ml) TNFα. Treatment with genistein (10⁻⁶ or 10⁻⁵ M) significantly elevated basal NF-κB activity, as did TNFα at 1 ng/ml (Fig. 4A) and 10 ng/ml (Fig. 4B) but failed to significantly amplify TNFα-induced NF-κB activation.

To investigate whether new mRNA transcription was necessary for genistein's stimulatory effects on NF-κB activation suggestive on an indirect action on NF-κB activation we used 5,6-dichloro-1-ß-D-ribofuranosylbenzimidazol (DRB), to inhibit transcription activity. DRB is known to suppress genomic transcription at a dose of 10⁻⁶ M (25). We thus titrated DRB to identify a dose that does not suppress endogenous luciferase transcription from plasmid DNA, but suppresses normal genomic transcription (Fig 5A). A dose of 10⁻⁶ M failed to block basal NF-κB-luciferase transcription and was selected for further study. Addition of DRB (10⁻⁶ M) completely suppressed the capacity of genistein to stimulate NF-κB promoter activity in MC3T3 cells (Fig. 5B).
Taken together, our data suggest that while 17ß-estradiol potently suppresses osteoblastic NF-κB activation, genistein promotes NF-κB induction, but through an indirect mechanism involving transcriptional regulation of a NF-κB inducing factor or factors.

Discussion

The estrogen 17ß-estradiol, and the phytoestrogen genistein, stimulate bone formation and suppress bone resorption in vivo (26). Genistein can stimulate protein synthesis through activation of aminoacyl-tRNA synthetase in osteoclastic cells (15) and stimulate apoptosis of mature osteoclasts through a Ca²⁺ signaling mechanism (17). Furthermore, the suppressive effect of genistein on rat osteoclasts involves, in part, the inhibition of protein kinase activity and the activation of protein tyrosine phosphatase activity in osteoclasts (18). However, the molecular mechanisms by which genistein regulates osteoblast formation and activity is presently unknown.

This study was conducted to determine if the actions of 17ß-estradiol and genistein are mediated through suppression of NF-κB, a signal transduction pathway known to be critical to osteoclastic differentiation and activity (27,28), and recently reported to antagonize osteoblastic differentiation in vitro through suppressive actions on Smad signaling (19,20).

Interestingly, our data reveal differential actions of 17ß-estradiol and genistein on basal and TNFα-induced NF-κB activity in MC3T3 preosteoblastic cells. Although both 17ß-estradiol and genistein promoted enhanced differentiation and mineralization of MC3T3 cells in culture, 17ß-estradiol failed to impact basal NF-κB activity in these cells, while genistein elicited a dose-dependent increase in NF-κB activity. Furthermore, 17ß-estradiol had a significant inhibitory effect on TNFα-induced NF-κB activity, while genistein failed to augment or suppress the stimulation of NF-κB activity induced by TNFα.

The reason for these differential effects of 17ß-estradiol and genistein are likely complex and remain to be elucidated. However, one possible explanation is that genistein has a higher affinity for estrogen receptor (ER) than for ERα (29). Consequently, different downstream signals mediated by ERα and β may account for some of the differential actions observed in this system.

The specific mechanisms that regulate NF-κB activation are well studied and involve both canonical and alternative NF-κB pathways (22). The mechanism by which genistein induces NF-κB activity in osteoblasts however, remains unknown and may directly target the canonical pathway, the alternative pathway, both pathways, or it may regulate NF-κB indirectly via other signaling molecules. The inability of genistein to amplify the NF-κB-inducing capacity of TNFα at a sub-saturating concentration (1 ng/ml) favors an indirect action of genistein on NF-κB. This is further supported by our data demonstrating that the stimulatory effect of genistein is mediated through a transcriptional mechanism, as suppression of new transcription by DRB prevents induction of NF-κB by genistein.
The capacity of genistein to stimulate rather than suppress NF-κB activity in MC3T3 cells was also unexpected in light of previous studies in a macrophage cell line where genistein was reported to inhibit LPS induced NF-κB activation (21). Although physiological concentrations of 17β-estradiol only repressed NF-κB activation by 10 ng/ml of TNFα by a modest ~35%, the data suggest that the deficiency in 17β-estradiol associated with menopause, may significantly contribute to the decline in bone mass due to the loss of this mitigating signal on osteoblastic NF-κB activity. Furthermore, enhanced NF-κB activation in osteoblasts driven by higher TNFα concentrations in postmenopausal conditions may lead to a diminished compensatory increase in bone formation in response to elevated bone resorption, thus uncoupling the system and setting the stage for development of osteoporosis.

While 17β-estradiol may stimulate bone anabolism in part, by antagonizing TNFα-induced NF-κB activation, genistein not only failed to prevent cytokine-induced NF-κB activation, but directly promoted NF-κB activation in osteoblasts. How genistein augments osteoblastic differentiation remains unknown, however our data suggest important mechanistic differences in the mechanisms by which 17β-estradiol and genistein promote bone formation.

Acknowledgements

This study was supported in part by a grant from the University Research Committee of Emory University. MNW is supported in part by grants from NIAMS (AR053607 and AR056090).

References