Expression of genes and their responses to enzyme replacement therapy in a Fabry disease mouse model

EUN-SOOK PARK*, JIN-OK CHOI*, JOO-WON PARK, MI HEE LEE, HAE-YOUNG PARK and SUNG-CHUL JUNG

Department of Biochemistry, School of Medicine, Ewha Womans University, Seoul 158-710, Korea

Received March 13, 2009; Accepted June 3, 2009

DOI: 10.3892/ijmm_00000246

Abstract. Fabry disease is a lysosomal storage disease caused by a deficiency of α-galactosidase A, which results in aberrant glycosphingolipid metabolism and accumulation of globotriaosylceramide (Gb3). Since a correlation between the level of Gb3 and clinical manifestations of Fabry disease has not been observed, we investigated potential diagnostic biomarkers. Hepatic and renal gene expression of male α-galactosidase A-deficient mice (Fabry mice) was compared with that of wild-type mice. Microarray analyses were performed using samples taken before and after intravenous infusion of α-galactosidase A. The identified genes were validated using quantitative real-time PCR and Western blot assay. Expression of hepatic Serum Amyloid A1 (Saa1), S100 Calcium-binding protein A8 and A9 (S100a8 and a9), and Lipocalin 2 (Lcn2) and renal Neuropeptide Y (Npy), Thrombospondin 2 and 4 (Tsp-2 and -4) was significantly upregulated in Fabry mice compared with wild-type mice and normalized by enzyme replacement therapy. Plasma concentrations of Lcn2 and Npy were also greater in Fabry mice and reduced to wild-type levels after enzyme replacement therapy, although the plasma concentrations of these proteins show heterogeneity. Upregulation of Saa1, S100a8, S100a9 and Lcn2 may modulate inflammation and Lcn2, Npy and Tsp may be associated with vascular and renal involvement in Fabry disease. Furthermore, these genes are promising targets for developing biomarkers for monitoring disease progression and therapeutic efficacy in patients with Fabry disease.

Introduction

Fabry disease is an X-linked lysosomal storage disorder caused by a deficiency of α-galactosidase A (α-Gal A; EC 3.2.1.22) (1). This causes accumulation of glycosphingolipids, particularly globotriaosylceramide (Gb3), also known as ceramide trihexoside, in most cell types (2). Glycolipid accumulates predominantly in the endothelial cells of the kidney, heart, liver and spleen and in the plasma. With increasing age, progressive accumulation of glycolipid in vital organs causes renal, cardiac and cerebrovascular complications (3). However, the pathologic mechanism by which endothelial dysfunction occurs is unclear.

The most efficient and reliable method of diagnosing Fabry disease is to determine the activity of α-Gal A in plasma, isolated leukocytes, or cultured cells. α-Gal A enzyme replacement therapy (ERT) has been available since 2001. The safety and efficacy of ERT were demonstrated in preclinical trials (4,5). Although α-Gal A ERT clears Gb3 from endothelial cells, its clinical effects are not as pronounced as predicted (6). ERT stabilizes renal function and attenuates cardiac hypertrophy in some patients, but others experience progressive complication (7). These findings suggest that an elevated level of Gb3 is not necessarily correlated with the clinical manifestation of Fabry disease. Therefore, there is a need to elucidate the etiology of this disease and to identify biomarkers for diagnosis, monitoring disease progression and testing the effect of therapies in clinical trials.

We examined gene expression in Fabry mice using a microarray technique to identify genes associated with the pathogenesis of Fabry disease and potential biomarkers. We subsequently evaluated whether ERT reduces overexpression of genes in Fabry disease.

Materials and methods

Animals. A pair of Fabry mice, provided by Dr Roscoe O. Brady of the National Institutes of Health (Bethesda, MD, USA), was bred to acquire a sufficient number of mice for this study. The mice were 15 weeks old at the inception of the study. All mice were genotyped using PCR as described previously (8). A minimum of three age-matched animals were used for each group. Mice were fed an autoclaved diet and water ad libitum. All animals were treated in accordance with the Animal Care
Guidelines of the Ewha Woman's University School of Medicine (Seoul, Korea) and the National Institutes of Health Guide for the Care and Use of Laboratory Animals. For ERT, Fabry mice received an infusion of 1 mg/kg body weight of α-Gal A (Genzyme, Cambridge, MA, USA) in normal saline via the tail vein.

α-Gal A assay. A fluorimetric assay for α-Gal A was performed as previously described (9) with minor modifications. Tissue samples were homogenized and sonicated in an aqueous buffer containing 5 mg/ml sodium taurocholate, pH 4.4 and then centrifuged at 20,000 x g for 30 min. α-Gal A activity was determined by incubating aliquots of supernatant at 37°C in a pH 4.4 buffer containing 28 mM citric acid, 44 mM disodium phosphate, 5 mM 4-methylumbelliferyl-α-D-galactopyranoside, 4 mg/ml bovine serum albumin and 0.1 M N-acetylgalactosamine, a specific inhibitor of N-acetylgalactosaminidase.

Quantification of Gb3 levels. Extraction and saponification of lipids and extraction of the glycolytic fraction were performed as described previously (10). The glycolipid fraction was mixed with 5 μl of ISTD (N-acetyl-galactosyolphingosine) and 795 μl of 80% dioxane and then analyzed using a liquid chromatography-mass/mass spectrometer (LC-MS/MS, ABI 4000, Applied Biosystems, Foster City, CA, USA). Quantitation of glycolipids was done using a C8 column and an evaporative light-scattering detector. The Gb3 standard was obtained from Matreya (Pleasant Gap, PA, USA).

Oligonucleotide microarray analysis. The livers and kidneys of wild-type mice, untreated and ERT Fabry mice (four mice from each group) were pooled to minimize interanimal variability, and total RNA was extracted using a Ribopure Kit (Ambion, Austin, TX, USA) according to the manufacturer’s protocol. The integrity of RNA was examined by electrophoresis using a 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). Total RNA (3 μg) from each group was amplified separately and labeled with either Cy3 or Cy5 using an Agilent Low RNA Input Fluorescent Linear Amplification Kit (Agilent Technologies). Cy3- and Cy5-labeled targets were hybridized to an Agilent 44K mouse oligonucleotide microarray at 60˚C for 17 h. After hybridization, arrays were washed in three consecutive steps with the following buffers, 4000, Applied Biosystems, Foster City, CA, USA). Quantitation of Gb3 levels was performed using the SYGR Green System (Applied Biosystems) to confirm the relative expression of genes among the three groups. Hypoxanthine guanine phosphoribosyltransferase (Hprt) was used as an endogenous murine control gene (11). Amplification was performed using 0.2 μg of cDNA products in a total reaction volume of 20 μl and an ABI PRISM 7000 Sequence detection system (Applied Biosystems). Amplification condition was 40 cycles at 95˚C for 60 sec and 60°C for 60 sec. The accuracy of gene amplification was validated using a dissociation curve. The relative expression of genes among groups was calculated using the 2-ΔΔCt method (12).

Western blotting. Tissue (10-20 mg) from samples that were stored in liquid nitrogen was homogenized in Pro-Prep solution (Intron Biotechnology). The tissue lysate was centrifuged at 13,000 x g for 30 min, and the supernatant was collected and heated at 100˚C for 3 min. Equal amounts of protein were separated by 8-13% SDS-PAGE and transferred to polyvinylidene difluoride membrane (Millipore, Bedford, MA, USA). The membranes were blocked using 5% skim milk in TBST (20 mM Tris-HCl, pH 7.5; 500 mM NaCl; and 0.1% Tween-20) for 2 h at room temperature and were then sequentially incubated with primary antibodies, polyclonal anti-mouse Lipocalin2 (Lcn2) antibody, polyclonal anti-mouse Serum Amyloid A1 antibody, polyclonal anti-mouse S100a8 antibody, polyclonal anti-mouse S100a9 antibody (all from R&D Systems, Minneapolis, MN, USA), mouse monoclonal anti-thrombospondin-1 (Tsp-1) antibody (Thermo Fisher Scientific, Waltham, MA, USA), anti-mouse Tsp-2 antibody (BD Biosciences, San Jose, CA, USA), anti-mouse Tsp-4 antibody (Santa Cruz Biotechnology, San Diego, CA, USA), or β-actin antibody (Sigma-Aldrich, St Louis, MO, USA). Membranes were then washed and incubated with the HRP-conjugated secondary antibodies, anti-rabbit-, -goat and -mouse IgG (Santa Cruz Biotechnology). The washes were repeated and membranes were developed using a chemiluminescent agent (ECL; GE Healthcare, Buckinghamshire, UK) and visualized using a Bio-Imaging analyzer (LAS-3000, Fuji, Tokyo, Japan). The relative protein expression level of an individual gene for each sample was normalized against β-actin or GAPDH expression.

Plasma Lcn2 concentration. Plasma Lcn2 concentration was estimated using the Duoset ELISA development system (R&D Systems). Briefly, 96-well, flat-bottom microtiter plates were coated with diluted capture antibody and blocked. Subsequently, standard and plasma were diluted in blocking reagent and incubated. After washing, the detection antibody (biotinylated rat anti-mouse Lcn2) was added and incubated. Streptavidin-HRP and substrate solution were added and incubated. The OD 450 nm was determined using a Versamax microplate reader (Molecular Devices, Menlo Park, CA, USA). Plasma Lcn2 concentrations in Fabry mice were determined after three weekly injections of α-galactosidase A.
Plasma neuropeptide Y concentration. Plasma neuropeptide Y (Npy) concentration was estimated using an enzyme immunoassay kit from Phoenix Pharmaceuticals Inc. (Burlingame, CA, USA) after extraction of peptides from plasma with Sep-Column C18 Cartridges (Phoenix Pharmaceuticals Inc.).

Statistical analysis. The statistical significance of differences between groups was determined using Student’s t test. Data are presented as the mean ± standard deviation, ±SD. Null-hypothesis probabilities <0.05 were considered significant.

Results

α-Gal A activity and Gb3 level after ERT. A significant increase in enzyme activity in the organs tested was detected one week after injection. α-Gal A activity was 94.21±5.29
and 55.58±7.85 nmol/h/mg protein in the liver and kidney, respectively. These enzyme activities were very similar to those in wild-type mice (75.66±8.75 and 68.27±4.14 nmol/h/mg protein in liver and kidney, respectively). Liver tissue Gb3 levels were also reduced to within the normal range by ERT. The kidney Gb3 level of untreated Fabry mice that received ERT (0.821±0.0101 nmol/mg protein) was less than that of age-matched untreated Fabry mice (8.034±0.6511 nmol/mg protein). However, the Gb3 level of treated Fabry mice was greater than that of age-matched wild-type mice (0.281±0.0665 nmol/mg protein).

Gene expression profiles in liver and kidney tissue. We measured gene transcript alterations in a mouse model of Fabry disease one week after ERT. Table I shows up- or downregulated genes, but normalized after ERT in the liver Fabry mice. Table II shows upregulated or downregulated genes, but normalized after ERT in the kidney of Fabry mice. Liver S100a8, Saa1, S100a9 and Lcn2 and kidney Npy, Tsp-2 and Tsp-4 expression was significantly up-regulated in Fabry mice compared with wild-type mice.

Validation of gene expression using real-time PCR. To verify microarray data, mRNA was detected using semiquantitative RT-PCR and quantitative real-time PCR. Real-time PCR revealed that mRNA expression of liver Saa1, S100a8, S100a9 and Lcn2 and kidney Npy, Tsp-2 and Tsp-4 was significantly increased in untreated Fabry mice compared with wild-type mice (Figs. 1 and 2). Expression of these genes was normalized by ERT.

Validation of gene expression with Western blotting. Western blot analysis revealed that hepatic expression of Saa1, S100a9 and Lcn2 protein was greater in Fabry mice than in wild-type mice. Protein expression in Fabry mice was normalized by ERT (Fig. 3). These findings are consistent with the results of the microarray and real-time PCR experiments. Expression of S100a8 protein was not elevated in untreated Fabry mice. Expression of kidney Tsp-1, 2 and 4 was not statistically significant in Fabry mice compared to wild-type mice but was reduced in ERT-received Fabry mice (Fig. 4).
Changes of the Plasma Lcn2 and Npy concentration after ERT. In order to determine whether Lcn2 and Npy are useful biomarkers for diagnosing Fabry disease and monitoring the efficacy of therapy, we studied plasma Lcn2 and Npy concentration changes in Fabry mice. Average plasma Lcn2 and Npy concentrations in untreated Fabry mice were 285.20±26.87 and 0.66±0.27 ng/ml, respectively. Plasma Lcn2 concentrations in Fabry mice were not consistent (Fig. 5). Plasma Lcn2 concentrations in Fabry mice ranged from 30 to 700 ng/ml. Among Fabry mice with high plasma Lcn2 levels, plasma Lcn2 concentrations gradually decreased to the values of wild-type mice three weeks after three consecutive weekly ERTs (Fig. 6). Plasma Npy concentrations in Fabry mice were also heterogeneous and were reduced by ERT (Fig. 7).

Discussion

The most efficient and reliable method of diagnosing Fabry disease is to determine the activity of α-galactosidase A in plasma, isolated leukocytes, or cultured cells. Excessive Gb3 contributes to endothelial dysfunction in Fabry disease (13). As elevated levels of Gb3 and the clinical manifestation of Fabry disease are not necessarily correlated, there is a need to better understand the etiology of this disease and to identify biomarkers for diagnosis, monitoring disease progression and testing the effect of therapies in clinical trials. Moore et al.
reported a well-designed and systemic microarray study in which a Fabry disease mouse model was used (14). They reported that several important genes are involved in the pathogenesis of Fabry disease, including Rppgr1, securin and Sod3, and demonstrated multiple and complex cellular abnormalities in this disease (14).

Therefore, we determined whether secreted proteins are useful as biological candidate markers and whether renal gene expression patterns are related to endothelial dysfunction in Fabry disease. The upregulated genes, Saa1, S100a8, S100a9 and Lcn2 in the liver and Npy, Tsp-2 and Tsp-4 in the kidney, were normalized by ERT. Among these genes, Lcn2, Npy, Tsp-2 and Tsp-4 were related to angiogenesis as agonists or antagonists.

Serum Amyloid A (SAA) is a superfamily of acute-phase proteins. The level of SAA in the blood increases in response to tissue injury and inflammation. SAA, an important clinical marker for inflammation (15) and precursor protein of secondary reactive amyloidosis (16), contributes to cellular cholesterol homeostasis, modulates intracellular calcium levels and promotes signaling cascades (17-19). In addition, several functions of SAA that were described in the context of inflammation are also compatible with tumor cell invasion and metastasis.

The S100 proteins are a large family of cytoplasmic and extracellular Ca2+-binding proteins characterized by a high degree of amino acid sequence conservation (20). Alterations in S100 function was implicated in many diseases such as Down syndrome, Alzheimer's disease, cardiomyopathy, porosis, cystic fibrosis, amyotrophic lateral sclerosis and epilepsy (21,22).

LCN2, also known as 24p3 and neutrophil gelatinase-associated lipocalin (NGAL), is a secretory glycoprotein that was originally identified in mouse kidney cells and human neutrophil granules (23,24). Several inflammatory stimuli, such as lipopolysaccharides and IL-1, induce LCN2 expression and secretion in these cells (25,26), indicating that LCN2 is involved in the inflammatory responses. However, it was suggested that LCN2 is a sensitive biomarker of early-stage renal injury (27,28). LCN2 is also important for normal kidney formation in the early stages of mammalian development. Furthermore, LCN2 antagonizes ras-induced angiogenesis through down-regulation of VEGF expression and upregulation of Tsp-1 expression (29). Thus, LCN2 is related to endothelial damage in the renal dysfunction observed in Fabry disease. The LCN2 expression levels in Fabry mice were heterogeneous, although plasma LCN2 levels were increased in 9 of 11 Fabry mice (Fig. 5). Endothelial function decreases with age in Fabry mice (30). However, there was no relationship between age and plasma LCN2 level in Fabry mice (data not shown).

Tsp-1 and -2 are matricellular proteins that inhibit angiogenesis in vitro and in vivo (31-33). In addition, several studies show that Tsp-1, fragments of Tsp-1 and peptides derived from Tsp-1 inhibit angiogenesis and cause apoptosis in endothelial cells (34-36). Moreover, Tsp-1 was identified as a novel mediator of cell ischemic injury in the kidney (37). Our microarray data show that Tsp-2 was upregulated in the kidneys of Fabry mice compared with wild-type mice. In accordance with heterogeneity of Lcn2 expression in Fabry mice, expression of Tsp-1, -2 and -4 was not consistent (Fig. 4). The Lcn2 expression level is proportionally related to the expression of Tsp-1 (Fig. 8). Our study revealed for the first time that Lcn2, Tsp-1 and -2 expression are upregulated in the kidney of the Fabry mouse, which suggests that increased Tsp-1 and -2 expression cause endothelial cell damage.

NPY, a 36 amino acid peptide of the pancreatic polypeptide family, is one of the most abundantly expressed peptides in the nervous system (38). Because it has six different receptors (Y1 to Y6) that are expressed in many tissues, this neuro-peptide Y is involved in the regulation of many biological functions (38-40). The presence of NPY in the dense plexus of nerve fibers around the renal juxtaglomerular apparatus was reported (40). Several investigators reported that the circulating concentration of NPY is significantly increased in chronic renal failure patients (40-42). In addition, we found that kidney Npy mRNA levels and plasma Npy concentrations were greater in Fabry mice than in wild-type mice. However, the difference in the plasma concentration of NPY between untreated Fabry mice and wild-type mice was not statistically significant. Further studies are needed to investigate factors affecting Npy concentration in Fabry mice, such as renal function.

In conclusion, we demonstrated that liver Saa1, S100a8, S100a9 and Lcn2 and kidney Npy were significantly up-regulated in Fabry mice compared with wild-type mice. Saa1, S100a8, S100a9 and Lcn2 modulate inflammation and Lcn2, Npy and Tsp may be associated with vascular and renal functions. Plasma Lcn2 and Npy levels were detected and are related to Fabry disease progression. These genes may play important roles in the pathogenesis of Fabry disease and Lcn2 and Npy present promising targets for the development of biomarkers in patients with Fabry disease.

Acknowledgements

This study was supported by a grant from the Korea 21 R&D project (A010384) of the Ministry of Health and Welfare, Republic of Korea.
References


