JNK and p38 inhibitors increase and decrease apoptosis, respectively, in pyrogallol-treated calf pulmonary arterial endothelial cells

YONG HWAN HAN, HWA JIN MOON, BO RA YOU, SUNG ZOO KIM, SUHN HEE KIM and WOO HYUN PARK

Department of Physiology, Medical School, Centers for Healthcare Technology Development Institute for Medical Sciences, Chonbuk National University, JeonJu 561-180, Korea

Received June 25, 2009; Accepted August 5, 2009

DOI: 10.3892/ijmm_00000284

Abstract. Pyrogallol (PG) as a polyphenol compound induces apoptosis in several types of cells. Here, we investigated the effects of MAPK inhibitors on PG-treated calf pulmonary artery endothelial cells (CPAEC) in relation to cell death, ROS and GSH. PG inhibited the growth of CPAEC and also induced cell death, which was accompanied by the loss of mitochondrial membrane potential (MMP; ΔΨm). PG decreased the ROS level and increased the GSH depleted cell number in CPAEC. JNK inhibitor intensified the growth inhibition by PG whereas p38 inhibitor attenuated the growth inhibition. While MEK and p38 inhibitors decreased CPAEC death by PG, JNK inhibitor increased. None of the MAPK inhibitors significantly increased ROS level in PG-treated CPAEC. JNK inhibitor increased GSH depleted cell number in PG-treated CPAEC whereas p38 inhibitor decreased the number. MAPK inhibitors differently affected cell growth, death, ROS and GSH levels in control CPAEC. In conclusion, PG induced apoptosis via the loss of MMP (ΔΨm) in CPAEC, which is accompanied by GSH depletion. JNK and p38 inhibitors increased and decreased apoptosis in PG-treated CPAEC, respectively, which were correlated with GSH depletion.

Introduction

Pyrogallol (PG) is a polyphenol compound and known as a superoxide anion (O2⁻) generator (1,2). The O2⁻ belongs to the reactive oxygen species (ROS) including hydrogen peroxide (H2O2) and hydroxyl radical (OH). ROS have recently been implicated in the regulation of many important cellular events, including transcription factor activation, gene expression, differentiation and cell proliferation (3-5). A change in the redox state of the tissue and cell implies a change in the generation or metabolism of ROS. Cells possess antioxidant systems to control the redox state, which is important for their survival. Excessive production of ROS gives rise to the activation of events leading to death in several cell types (6-9). PG also induce the O2⁻-mediated death of several types of cells such as mesangial cells (10), lymphoma cells (11) and Calu-6 lung cancer cells (12,13).

The mitogen-activated protein kinases (MAPKs) are a large family of serine/threonine kinases, which are major components of signaling pathways in cell proliferation, differentiation and cell death (14). There are currently four known MAPKs: the extracellular signal regulated kinase (ERK1/2), the c-Jun N-terminal kinase/stress-activated protein kinase (JNK/SAPK), the p38 and the big mitogen-activated protein kinase 1 (BMK1) (15). Each MAP kinase pathway has relatively different upstream activators and specific substrates (16). Substantial evidence demonstrates that JNK and p38 are strongly activated by ROS or by a mild oxidative shift of the intracellular thiol/disulfide redox state, leading to apoptosis (17,18). ROS are also known to induce ERK phosphorylation and activate the ERK pathway (19). In most instances, ERK activation has a pro-survival function rather than pro-apoptotic effects (20).

Vascular endothelium is involved in various regulatory functions such as blood pressure, inflammation and angiogenesis (21). Fundamental to the transition of tumors from a latent to malignant state, angiogenesis involving formation of new blood vessels from pre-existing vasculature is a crucial part. The proliferation of endothelial cells (ECs; sprouting) is the early step of angiogenesis. Despite critical roles for vascular ECs in tumor biogenesis and progression, the effects of polyphenol compounds, especially PG on ECs remain relatively poorly understood.
Here, we demonstrate that PG inhibited the growth of calf pulmonary artery endothelial cells (CPAEC) and investigated the effects of MAPK inhibitors on PG-treated CPAEC in relation to cell death, ROS and GSH.

Materials and methods

Cell culture. CPAEC were obtained from KCLB (Korean Cell Line Bank) and were maintained in humidified incubator containing 5% CO₂ at 37°C. CPAEC were cultured in RPMI-1640 supplemented with 10% fetal bovine serum (FBS) and 1% penicillin-streptomycin (Gibco BRL, Grand Island, NY). CPAEC were routinely grown in 100-mm plastic tissue culture dishes (Nunc, Roskilde, Denmark) and harvested with a solution of trypsin/EDTA (Gibco BRL) while in a logarithmic phase of growth. CPAEC were maintained in these culture conditions for all experiments.

Reagents. PG was purchased from the Sigma-Aldrich Chemical Company (St. Louis, MO). PG was dissolved in H₂O at 100 mM as a stock solution. JNK inhibitor (SP600125), MEK inhibitor (PD98059) and p38 inhibitor (SB203580) were purchased from Calbiochem (San Diego, CA). All the reagents were dissolved in DMSO at 10 mM as a stock solution. Cells were pretreated with each MAPK inhibitor for 30 min prior to treatment with PG. DMSO (0.2%) was used as a control vehicle. All stock solutions were wrapped in foil and kept at -20°C.

Cell growth assay. The effect of drugs on CPAEC growth was determined by measuring 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) dye absorbance of living cells as previously described (22). In brief, 3x10⁴ cells per well were seeded in 96-well microtiter plates (Nunc). After exposure to 50 μM PG with or without 10 μM JNK inhibitor, MEK inhibitor or p38 inhibitor for 24 h, 20 μl of MTT (Sigma) solution (2 mg/ml in PBS) were added to each well of 96-well plates. The plates were incubated for further 4 h at 37°C. MTT solution in the medium was aspirated off and 200 μl of DMSO were added to each well to solubilize the formazan crystals formed in viable cells. Optical density was measured at 570 nm using a microplate reader (Spectra MAX 340, Molecular Devices Co., Sunnyvale, CA).

Sub-G1 cell analysis. Sub-G1 cells were determined by propidium iodide (PI, Sigma-Aldrich; Ex/Em=488/617 nm) staining as previously described (23). In brief, 1x10⁶ cells in 60 mm culture dish (Nunc) were incubated with 50 μM PG with or without 10 μM JNK inhibitor, MEK inhibitor or p38 inhibitor for 24 h. Cells were then washed with PBS and fixed in 70% ethanol. Cells were washed again with PBS, then incubated with PI (10 μg/ml) with simultaneous RNase treatment at 37°C for 30 min. Cell DNA content was measured using a FACStar flow cytometer (Becton-Dickinson, San Jose, CA) and analyzed using Lysis II and CellFIT software (Becton-Dickinson) or ModFit software (Verity Software House, Inc. ME).

Annexin V staining. Apoptosis was determined by staining cells with annexin V-fluorescein isothiocyanate (FITC) (Ex/Em=488/519 nm) as previously described (13). In brief, 1x10⁶ cells in 60 mm culture dish (Nunc) were incubated with 50 μM PG with or without 10 μM JNK inhibitor, MEK inhibitor or p38 inhibitor for 24 h. Cells were washed twice with cold PBS and then resuspended in 500 μl of binding buffer (10 mM HEPES/NaOH pH 7.4, 140 mM NaCl, 2.5 mM CaCl₂) at a concentration of 1x10⁶ cells/ml. Five microliters of annexin V-FITC (PharMingen, San Diego, CA) was then added to these cells, which were analyzed with a FACStar flow cytometer (Becton-Dickinson).

Measurement of MMP (Δψm). MMP (Δψm) levels were measured by the Rhodamine 123 fluorescent dye (Ex/Em=485/535 nm) as previously described (24). In brief, 1x10⁶ cells in 60 mm culture dish (Nunc) were incubated with 50 μM PG with or without 10 μM JNK inhibitor, MEK inhibitor or p38 inhibitor for 24 h. Cells were washed twice with PBS and incubated with Rhodamine 123 (0.1 μg/ml; Sigma) at 37°C for 30 min. Rhodamine 123 staining intensity was determined by flow cytometry. Rhodamine 123 negative cells indicate the loss of MMP (Δψm) in CPAEC. MMP (Δψm) levels in cells except MMP (Δψm) loss cells were expressed as mean fluorescence intensity (MFI), which was calculated by CellQuest software.

Detection of intracellular ROS and O₂• levels. Intracellular ROS such as H₂O₂, ‘OH and ONOO• were detected by means of an oxidation-sensitive fluorescent probe dye, 2′,7′-Dichlorodihydrofluorescein diacetate (H₂DCFDA; Ex/Em=495/529 nm) (25) (Invitrogen Molecular Probes, Eugene, OR). H₂DCFDA is poorly selective for O₂• among ROS. In contrast, dihydroethidium (DHE) (Ex/Em=518/605 nm) (Invitrogen Molecular Probes) is highly selective for O₂• among ROS. In brief, 1x10⁶ cells in 60 mm culture dish (Nunc) were incubated with 50 μM PG with or without 10 μM JNK inhibitor, MEK inhibitor or p38 inhibitor for 24 h. Cells were then washed in PBS and incubated with 20 μM H₂DCFDA or DHE at 37°C for 30 min according to the instructions of the manufacturer. DCF and DHE fluorences were detected using a FACStar flow cytometer (Becton-Dickinson). ROS and O₂• levels were expressed as mean fluorescence intensity (MFI), which was calculated by CellQuest software.

Detection of the intracellular glutathione (GSH). Cellular GSH levels were analyzed using 5-chloromethylfluorescein diacetate (CMFDA, Molecular Probes) (Ex/Em=522/570 nm) as previously described (25). In brief, 1x10⁶ cells in 60 mm culture dish (Nunc) were incubated with 50 μM PG with or without 10 μM JNK inhibitor, MEK inhibitor or p38 inhibitor for 24 h. Cells were then washed with PBS and incubated with 5 μM CMFDA or DHE at 37°C for 30 min. CMF fluorescence intensity was determined using a FACStar flow cytometer (Becton-Dickinson). Negative CMF staining (GSH depleted) cells were expressed as the percent of (-) CMF cells. CMF levels in cells except GSH depleted cells were expressed as mean fluorescence intensity (MFI), which was calculated by CellQuest software.

Statistical analysis. The results shown in Figures represent the mean of at least three independent experiments; bar, SD.
The data were analyzed using Instat software (GraphPad Prism4, San Diego, CA). The Student’s t-test or one-way analysis of variance (ANOVA) with post hoc analysis using Tukey’s multiple comparison test was used for parametric data. The statistical significance was defined as \(p<0.05 \).

Results

Effects of MAPK inhibitors on cell growth and death in PG-treated CPAEC. We examined the effect of MAPK inhibitors on the growth of PG-treated CPAEC using an MTT assay. Treatment with 50 \(\mu \)M PG inhibited the growth of CPAEC about 50% at 24 h (Fig. 1A). Treatment with MEK inhibitor did not affect the growth of PG-treated CPAEC (Fig. 1A). JNK inhibitor intensified the growth inhibition by PG whereas p38 inhibitor significantly attenuated the growth inhibition (Fig. 1A). All the inhibitors reduced control CPAEC growth (Fig. 1A).

Treatment with 50 \(\mu \)M PG increased sub-G1 cell numbers in CPAEC about 28% compared with control CPAEC not treated with PG. MEK inhibitor slightly reduced the number in PG-treated CPAEC (Fig. 1B). While JNK inhibitor increased sub-G1 cell numbers in PG-treated CPAEC, p38 inhibitor decreased the number (Fig. 1B). In addition, PG increased the number of annexin V staining cells in CPAEC, indirectly implying that CPAEC death by PG occurred via apoptosis (Fig. 1C). MEK and JNK inhibitor each slightly decreased and increased the number, respectively (Fig. 1C). Treatment with p38 inhibitor significantly reduced the number in PG-treated CPAEC (Fig. 1C). JNK inhibitor increased annexin V-FITC positive cells in control CPAEC (Fig. 1C).

Effects of MAPK inhibitors on MMP \((\Delta \Psi_m)\) in PG-treated CPAEC. Apoptosis is closely related to the collapse of MMP \((\Delta \Psi_m)\) (26). Thus, we determined the loss of MMP \((\Delta \Psi_m)\) in PG-treated CPAEC using a Rhodamine 123 dye at 24 h. As expected, the loss of MMP \((\Delta \Psi_m)\) was observed in PG-treated cells (Fig. 2A). Similar to the results of sub-G1 and annexin V-FITC cells, MEK and JNK inhibitor each slightly decreased and increased the loss of MMP \((\Delta \Psi_m)\), respectively (Fig. 2A). p38 inhibitor significantly reduced the loss in PG-treated CPAEC (Fig. 2A). JNK inhibitor alone triggered the loss in control CPAEC as well (Fig. 2A). In relation to MMP \((\Delta \Psi_m)\) levels in CPAEC except negative Rhodamine 123 staining cells, PG did not affect MMP \((\Delta \Psi_m)\) level in CPAEC (Fig. 2B). MEK and JNK inhibitors decreased the MMP \((\Delta \Psi_m)\) level in PG-treated and -untreated CAPEC (Fig. 2B). In contrast, p38 inhibitor increased the level in PG-treated and -untreated CPAEC (Fig. 2B).

Effects of MAPK inhibitors on ROS and O\(_2^*\) levels in PG-treated CPAEC. We assessed the changes of the intracellular ROS levels in PG and/or each MAPK inhibitor-treated CPAEC. As shown in Fig. 3A, ROS (DCF) level such as H\(_2\)O\(_2\) were significantly decreased in CPAEC treated with PG at 24 h. None of MAPK inhibitors significantly alter the level in PG-treated CPAEC (Fig. 3A). All the MAPK inhibitors increased ROS levels in control CPAEC and p38 inhibitor treatment showed a strong effect (Fig. 3A). When we detected the intracellular O\(_2^*\) levels in PG-treated CPAEC, red fluorescence derived from DHE reflecting intracellular O\(_2^*\) level was decreased at 24 h (Fig. 3B). None of MAPK inhibitors significantly changed O\(_2^*\) level in PG-treated CPAEC (Fig. 3B). MEK and JNK inhibitors increased O\(_2^*\) level in control CPAEC (Fig. 3B).

Effects of MAPK inhibitors on GSH levels in PG-treated CPAEC. When we analyzed the changes of GSH levels in CPAEC by using CMF fluorescence dye at 24 h, PG increased the number of GSH depleted cells in CPAEC about 30% compared with PG-untreated control CPAEC (Fig. 4A). JNK inhibitor increased the number in PG-treated CPAEC whereas p38 inhibitor decreased the number (Fig. 4A). JNK inhibitor increased the number in control CPAEC (Fig. 4A). Furthermore, when CMF (GSH) levels in CPAEC except negative CMF staining cells were assessed, GSH level was increased in PG-treated CPAEC (Fig. 4B). JNK and p38 inhibitors slightly reduced the level in PG-treated CPAEC (Fig. 4B). All the MAPK inhibitor increased GSH levels in control CPAEC (Fig. 4B).
In the present study, we focused on evaluating the effects of MAPK inhibitors on PG-treated CPAEC in relation to cell death, ROS and GSH, since PG inhibited CPAEC growth and induced their death. ERK activation has a pro-survival function rather than pro-apoptotic effects (20). However, our result showed that MEK inhibitor in this study, which presumably inactivates ERK, did not increase sub-G1 and annexin V-FITC positive cells in PG-treated CPAEC. Thus, inactivation of ERK by MEK inhibitor did not seem to be an enhanced factor on PG-induced CPAEC death. It is known that JNK and p38 lead to apoptosis (17,18). According to our data, JNK inhibitor increased CPAEC death by PG whereas p38 inhibitor decreased the death. These data imply that JNK and p38 signal transductions differently affect CPAEC death. JNK signaling in PG-treated CPAEC seems to be involved in a pro-survival pathway whereas p38 signaling is likely to be related to a pro-apoptotic function. In particular, JNK inhibitor alone increased annexin V-FITC positive cells in control CPAEC, implying that the prevention of JNK signaling by its inhibitor was tightly related to CPAEC death. Moreover, MEK inhibitor did not affect the growth of PG-treated CPAEC. JNK inhibitor intensified the growth inhibition of PG-treated CPAEC whereas p38 inhibitor significantly prevented the growth inhibition. In addition, all the inhibitors inhibited control CPAEC growth. These data suggest that the signaling pathways of MAPKs differently affect CPAEC growth in the presence or absence of PG.

PG induces apoptosis in several types of cells such as mesangial cells (10), human lymphoma cells (1), human glioma cells (11) and Calu-6 lung cancer cells (12,13).
triggered the loss of MMP (ΔΨm) in Calu-6 lung cancer cells (12,13). Like-wise, PG induced apoptosis via the loss of MMP (ΔΨm) in CPAEC. MEK and p38 inhibitors decreased the loss of MMP (ΔΨm) in PG-treated CPAEC. These results suggest that MEK and p38 signalings are positively involved in the loss of MMP (ΔΨm) in PG-treated CPAEC. In contrast, JNK inhibitor increased the loss of MMP (ΔΨm) in PG-treated and -untreated CPAEC, implying that JNK signaling is involved in maintenance of MMP (ΔΨm) in these cells. In relation to MMP (ΔΨm) levels in CPAEC, PG did not affect MMP (ΔΨm) level in viable CPAEC. MEK and JNK inhibitors decreased the MMP (ΔΨm) level in PG-treated and -untreated CAPEC. In contrast, p38 inhibitor increased the level in PG-treated and -untreated CAPEC. These results suggest that MAPK signalings differently affect MMP (ΔΨm) level in these cells.

PG can disturb the natural oxidation and reduction equilibrium in cells. For example, the increased patterns in O₂⁻ levels by PG were reported in pheochromocytoma PC12 cells (2), Calu-6 cells (27) and juxtaglomerular As4.1 cells (28). These data suggest that the apoptotic effects of PG are generally correlated with the changes of intracellular O₂⁻ levels. However, our data showed that the intracellular ROS levels including O₂⁻ were decreased in PG-treated CPAEC at 24 h. These data suggest that ROS level changes by PG are dependent of cell types. None of MAPK inhibitors significantly altered ROS level in PG-treated CPAEC. In addition, MEK and p38 inhibitors increased ROS levels in PG-untreated CPAEC without the induction of cell death. CPAEC death by PG and/or MEK and p38 inhibitors may not be correlated with ROS level changes. However, JNK inhibitor increased ROS levels in PG-untreated control CPAEC along with cell death and the loss of MMP (ΔΨm). Therefore, the exact role of ROS in CPAEC death needs to be defined further.

GSH, a main non-protein antioxidant in the cell, is able to clear away the O₂⁻ and provide electrons for enzymes such as glutathione peroxidase, which reduce H₂O₂ to H₂O (29). It has been reported that the intracellular GSH content has a decisive effect on anticancer drug-induced apoptosis, indicating that apoptotic effects are inversely proportional to GSH content (30). Likewise, PG increased the number of GSH depleted cells in CPAEC. JNK inhibitor increased the number in PG-treated CPAEC whereas p38 inhibitor decreased the number. JNK inhibitor alone also increased GSH depleted cell number in CPAEC. These results seem to be correlated with annexin V-FITC results from CPAEC treated with PG and/or each MAPK inhibitor. Interestingly, GSH level in viable CPAEC was increased by treatment with PG. Probably, the relatively high GSH level resulted from the lower consumption of GSH due to the decreased ROS level by PG. In addition, all the MAPK inhibitors increased GSH levels in control CPAEC. The increased GSH levels might happen to reduce increasing ROS by each MAPK inhibitor.

In conclusion, PG induced apoptosis via the loss of MMP (ΔΨm) in CPAEC, which is accompanied by GSH depletion. JNK and p38 inhibitors increased and decreased apoptosis in PG-treated CPAEC, respectively, which correlated with GSH depletion results.

Acknowledgements

This study was supported by a grant of the Korea Healthcare Technology R&D Project, Ministry for Health, Welfare & Family Affairs and Republic of Korea (A084194) and the Korea Research Foundation Grant funded by the Government of the Republic of Korea (MOEHRD).

References

