The effect of CAG repeat polymorphism in the glucocorticoid receptor on stress responses of mice exposed to water-immersion restraint stress

MASAFUMI TOMITA¹, HIRONOBU KATSUYAMA², TOSHIKO OKUYAMA¹, YOKO WATANABE³, KAZUO HIDAKA³, TAKEMI OTSUKI⁴ and MASAYUKI NATA⁵

Departments of ¹Medical Toxicology; ²Public Health; ³Natural Sciences, Division of Chemistry; ⁴Hygiene, Kawasaki Medical School, Kurashiki 701-0192; ⁵Department of Forensic Medicine and Science, Mie University Graduate School of Medicine, Tsu 514-8507, Japan

Received October 26, 2009; Accepted November 30, 2009

DOI: 10.3892/ijmm_00000360

Abstract. Exposure to stress activates the hypothalamic-pituitary-adrenal (HPA) axis, which is followed by an increase in production of its end product, corticosterone, considered to be the most important glucocorticoid (GC) in rodents. Glucocorticoid receptor (GR) signaling has been suggested as a potential mechanism responsible for the pathogenesis of many clinical disorders. Here, we investigated the involvement of the GR polymorphism in stress response. ICR mice were screened by genomic PCR, bred, and divided into 3 groups according to the GR polymorphism, GR wt/wt, GR wt/Qn, and GRQn/Qn. Mice were exposed to water-immersion restraint stress (WRS), and then examined for gastric mucosal lesions, serum corticosterone, serum cytokines and serum Hsp70 levels. Male mice with GRQn/Qn exhibited a significantly greater gastric lesion index than those with GR wt/wt at 6 h of WRS. Stress-induced corticosterone output achieved peak levels at 3 h, after which it was downregulated. The serum level in the control group was GR wt/wt >GR wt/Qn >GR Qn/Qn, whereas the order at 6 h of WRS was reversed, GR Qn/Qn >GR wt/Qn >GR wt/wt, suggesting that the GR wt allele responded rapidly to stress. The IL-6 levels of each polymorphic line increased at 3 h and particularly at 6 h. On the contrary, the IL-10 levels in GR wt/wt and GR wt/Qn increased following exposure to WRS, whereas that in GR Qn/Qn showed no change. The Hsp70 levels in mice with GRQn allele particularly increased at 6 h of WRS, and the concentration in GR Qn/Qn significantly increased as compared to that in GR wt/wt. These results suggest that the GR gene polymorphism has a significant impact on the stress-induced output, including the gastric lesion index, corticosterone, cytokines, and Hsp70 levels in serum. The present study provides insights into the role of GR in individual responses to stress.

Introduction

Stress-induced abnormality is a highly complex phenomenon that occurs due to an interaction between genetic and environmental factors. A major stress-responsive/regulatory gene that has been extensively studied is the glucocorticoid receptor (GR) gene (1-3). It mediates many of the effects of glucocorticoid on target tissues by directly binding to elements in the DNA or by interacting with other transcription factors resulting in a modulation of the gene transcription. A common endocrine feature of stress response is the activation of the hypothalamus-pituitary-adrenal (HPA) axis, resulting in an increase in its end product, corticosterone, which is the most important glucocorticoid in rodents. The hormone binds to GR to impact many systems, such as the HPA axis itself, the immune system, metabolism, and behavior. Thus, GR is a key component in the HPA-related regulation of stress responses.

In humans, polymorphisms in the GR gene are thought to be of clinical relevance (4,5). GR polymorphisms may be related to both treatment outcome and HPA-axis activity in outpatients with major depression (6). Wüst et al (7) provided further evidence of the effect of GR gene polymorphisms on HPA axis regulation to psychosocial stress, including individual vulnerability for HPA-related clinical states. These findings indicate that stress effects vary significantly among individuals with genetic differences associated with polymorphic GR genes.

Experimental murine genetic models of complex human diseases show great potential for understanding human disease pathogenesis. The CAG repeat regions in the mouse GR gene have been previously described (8). Xu et al (9) have reported that the polymorphic form of mouse GR plays a critical role in complex mechanisms leading to corticosterone responses and anxiety-type behavior to restraint stress. Other studies have demonstrated that the polymorphism in CAG repeat affects GR activity (10).

The water-immersion restraint stress (WRS) model is often used as a ‘stressor’ for the induction of stress response
syndromes in animals (11,12). In addition, WRS affects the inflammatory cascade, but its impact on immunity remains to be determined. Extensive evidence indicates that the blood IL-6 level is increased after application of not only inflammatory stimuli but also stressors (13-15). Chida et al (16) have reported that the endogenous norepinephrine is responsible for stress-induced IL-6 production. On the other hand, heat shock proteins (Hsps), also known as stress proteins, are increased in a number of pathological conditions. Hsp70 is one of the important Hsps involved in gastric mucosal protection. Over-expression of Hsp70 has been found in the gastric mucosa of rats with gastric ulcers (17,18).

In the present study, we performed genetic screening for the GR polymorphism using the commonly used ICR mouse strain and divided them into GR polymorphic lines. Thereafter, we examined the involvement of GR polymorphisms in the response of mice to WRS.

Materials and methods

Animals and genetic selection. All experiments were approved by the Animal Research Committee of Kawasaki Medical School, Japan, and conducted according to the ‘Guide for the Care and Use of Laboratory Animals’ established by the Kawasaki Medical School, Japan. Adult male and female ICR mice (7-8 weeks old) were obtained from CLEA Japan. The initial selection for the GR genotype was done by PCR. Genomic DNA was prepared from tail snips (ca. 0.5 cm) using the Gentra Puregene Mouse Tail Kit (Qiagen). The following primer pairs were used as described elsewhere (9), forward, 5'-CTGCTTCTCAGGCAGATTCC-3' and reverse, 5'-TCCA GAAGCCGAAATGTCGT-3'. Following PCR and gel electrophoresis, mice were divided into 3 GR polymorphic lines: (i) GRwt/wt, wild-type with 8 glutamine repeats; (ii) GRwt/Qn, the heterozygous form. Mice were then allowed to mate with other mice from the same line to obtain appropriate numbers of each GR genotype. Four to five mice were housed per polycarbonate cage and maintained in a controlled environment at 23±1˚C with a relative humidity of 45-50% and a 12-h light/dark cycle. The mice had free access to commercial rodent MF pellets (Oriental Yeast) and tap water.

Induction of gastric lesions and sample collection. In this experiment, 7-9 week-old mice were used. Animals were fasted overnight in cages with wide mesh wire bottoms to prevent coprophagy and had free access to tap water. The animals with each GR genotype were randomly assigned into the following groups: (i) control, (ii) 1 h WRS (WRS/1 h), (iii) 3 h WRS (WRS/3 h), and (iv) 6 h WRS (WRS/6 h). Mice in the control group were not exposed to WRS. The WRS method has been described in detail previously (11). Briefly, mice were restrained in a 50-ml conical centrifuge tube filled with multiple punctures and immersed vertically to the level of the xiphoid process into a 24±1˚C water bath. After exposure to WRS, mice were anesthetized with sodium pentobarbital (50 mg/kg, i.p.), then intracardiac blood was collected, centrifuged, and the serum obtained was stored at -80˚C until analysis. Animals were sacrificed between 15:00 and 16:30. The stomachs were filled with 4% formalin for 15 min, and then they were removed quickly. The stomachs were dissected along the greater curvature and examined for mucosal lesions. Lesion size was determined by measuring the greater diameter of the lesion and was expressed as the lesion index (19).

Assay of corticosterone, cytokines, and Hsp70 in serum. The corticosterone levels in the serum were determined by a Correlate-EIA Immunoassay kit (Assay Design), according to the protocol for small volume samples provided by the company. Cytokine analyses were performed by using the murine inflammatory cytokine bead array (BD Biosciences). Flow cytometry was conducted by using the FACSCalibur (BD Biosciences), and data were analyzed by using the CBA software. The cytokines analyzed by this method were IL-6, IL-10, IL-12p70, TNF-α, IFN-γ, and MCP-1. The Hsp70 in the serum was determined by using a commercially available EIA kit (Assay Design), with slight modifications to the manufacturer's instructions. Briefly, we incubated serum samples in wells coated with a specific antibody overnight at 4˚C. The serum samples were diluted 80-fold (for corticosterone) or 2-fold (for cytokines and Hsp70) with assay buffers in each kit and were then subjected to the assay.

Statistical analysis. The data are presented as means ±SD. Statistical analyses were performed with one-way analysis of variance (ANOVA), followed by the Tukey-Kramer test. p-values of <0.05 were considered statistically significant.

Results

GR polymorphic lines in the ICR mouse strain were screened by determining the difference in size of the PCR products for the GR coding region. The size difference between GRwt and GRQn alleles depended on 8 CAG repeats (8 glutamines) as described by Xu et al (9). The allele frequency in the ICR mouse strain commercially obtained was 77.9% for the GRwt allele and 22.1% for the GRQn one (n=112). No gender difference was observed.

WRS-induced gastric lesions. Following exposure to WRS, mice developed severe gastric lesions in a time-dependent manner. Medium- and/or large-size blood clots were observed on the gastric mucosal membranes (Fig. 1). A few small lesions, including petechial bleeding, were also detected in the control group subjected to overnight fasting. Further quantitative estimation of the gastric lesions indicates that the male mice with GRQnQn exhibited a much greater injurious response than those with GRwtwt at 6 h exposure to WRS (37.0±5.1 vs. 22.1±4.8, p<0.05; Fig. 2). Although female mice also showed the time-dependent development of severe gastric lesions, the severity of the lesions was weaker than those observed in male mice, and no significant difference was observed in the gastric lesion index among the GR polymorphic lines (data not shown).

WRS-induced corticosterone levels in serum. As stress response is associated with a rise in corticosterone levels in the blood, we compared the corticosterone concentration among the GR polymorphic lines following exposure to WRS (Fig. 3). There was no difference in the serum corticosterone levels among the
polymorphic lines in normal groups. Only overnight fasting, including changes in housing conditions, resulted in an increase in the levels. In particular, a significant increase was observed in mice with the GRwt allele as compared to each normal value ($p<0.05$), and the rank order of these levels in the control group was GR$^{wt/wt}$$>GR^{wt/Qn}$$>GR^{Qn/Qn}$. The maximum level of corticosterone response was achieved at 3 h of WRS ($p<0.01$ from normal value), after which it was downregulated. The level in GR$^{wt/wt}$ mice was significantly decreased at 6 h ($p<0.05$, vs. at 3 h), and the order of the levels at 6 h of WRS was GR$^{Qn/Qn}$$>GR^{wt/Qn}$$>GR^{wt/wt}$, which was reverse of the order determined at 3 h of WRS. The corticosterone levels in GR$^{Qn/Qn}$ mice were significantly increased as compared to that in GR$^{wt/wt}$ mice in response to 6 h of WRS ($p<0.05$). These results suggest that the GR allele is involved in altered corticosterone response to stress and that the GRwt allele allows for a more rapid response to stress as compared to the GRQn allele.

WRS-induced cytokine levels in serum. Recent studies have provided evidence of the involvement of glucocorticoid in the maintenance of homeostasis during stress. In this study, we examined the involvement of the GR allele in WRS-induced changes in serum cytokine levels. The IL-6 level in the serum of each polymorphic line was significantly increased at 3 and 6 h ($p<0.01$) following exposure to WRS (Fig. 4A). On the other hand, the effect of WRS on the IL-10 serum concentration differed among the GR polymorphic lines. IL-10 levels in mice with GR$^{wt/wt}$ and GR$^{wt/Qn}$ showed a trend towards an increase following exposure to WRS, whereas those with GR$^{Qn/Qn}$ showed no change (Fig. 4B). Thus, the ratio of IL-6/IL-10 was significantly high, in the order of GR$^{Qn/Qn}$$>GR^{wt/Qn}$$>GR^{wt/wt}$ at 3 and 6 h of WRS (Fig. 5). The IL-6/IL-10 ratio in GR$^{Qn/Qn}$ mice at 3 h WRS was significantly higher than that in GR$^{wt/wt}$ mice ($p<0.05$). The serum TNF concentration was comparable to the IL-10 level. A small increase was observed in GRwt mice at 6 h of WRS (data not shown). Other cytokines examined showed no obvious quantitative difference in response to WRS under these experimental conditions.
Differences in serum HSP70 levels. Hsp70 is induced when a cell undergoes various types of stress. Although serum Hsp70 concentrations did not reach a detectable level in normal and control groups, it was detectable at 6 h of WRS and was found to be significantly increased in mice with GRQn allele (p<0.05, GRwt/wt vs. GRQn/Qn) (Table I).

Discussion

The present study shows that the GR polymorphism, which exists in the N-terminus of the GR gene, affects the biological activities of mice exposed to WRS. Heeley et al previously reported that rats with natural GR polymorphic lines have similar ligand binding affinity to dexamethasone and corticosterone (20). However, artificial alteration of the length of CAG repeats, results in the mutant form of GR exhibiting significantly higher steroid binding affinity (21). These results suggest a possible domain-domain interaction between the poly Q and ligand binding regions within the GR gene. In the present experiment, different polymorphic lines of GR were selected from a commonly used mouse strain using a previously described method (9), and the influence of the natural GR polymorphism on the response to WRS was examined. As expected, time-dependent, severe gastric lesions developed on the gastric mucosal membrane and severe bleeding was observed. In addition, both the changes in housing conditions and overnight fasting resulted in minor petechial bleeding, indicating that the treatment alone also effectively induces stress to animals. The lesion index was significantly greater in male GRQn/Qn mice than GRwt/wt mice at 6 h exposure to WRS. This difference in the lesion index between the GR polymorphic lines was not observed in female mice. In a study assessing gender differences, estrogen was found to play an important role in the reduction of stress-induced gastric mucosal injury in mice through the production of calcitonin gene-related peptide (CGRP) in sensory neurons and, therefore, may account for gender differences found in WRS-induced ulceration (22).

Table I. Comparison of serum Hsp70 levels among the GR polymorphic lines at normal, control (overnight fasting), and 6 h of WRS conditions.

<table>
<thead>
<tr>
<th>GRwt/wt</th>
<th>GRwt/Qn</th>
<th>GRQn/Qn</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>Control</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td>WRS/6 h</td>
<td>0.42±0.34</td>
<td>1.50±0.94*</td>
</tr>
</tbody>
</table>

*p<0.05 vs. GRwt/wt

Figure 4. Time course of serum cytokine concentration in the GR polymorphic lines of ICR mice after exposure to WRS. A, IL-6; B, IL-10. *p<0.01 vs. normal.

Figure 5. Time course of IL-6/IL-10 ratio in the GR polymorphic lines of ICR mice after exposure to WRS. *p<0.05 vs. normal;

![image2]
response to stress by the GR^{−/−} allele occurs very rapidly. However, the present results are in contrast to those obtained by Xu <i>et al</i> (9) who showed that both GR^{Qn/Qn} and GR^{Qn/Qb} mice had a much weaker corticosterone response to stress and more increased anxiety-type behaviors than GR^{wt/wt} mice. The reasons for this discrepancy between studies may depend on the method of stress and/or exposure duration to stress. Xu <i>et al</i> applied a 30-min restraint stress to mice, followed by collection of serum at 30 and 50 min after the start of restraint (9). Other investigators used GR-heterozygous mutant mice (GR^{−/+}) with a 50% GR gene dose reduction (23). Results from these studies indicate that the increase in corticosterone levels by immobilization was higher in GR^{−/−} mice at 40 and 60 min after stress, and the mutant mice showed increased anxiety-type behavior. Based on these findings, the elevations in corticosterone levels may not always yield the same physiological effects.

The IL-6 levels of each polymorphic line increased at 3 h and particularly at 6 h (p<0.01 vs. other groups) of WRS. Previous studies in animals have provided evidence of the involvement of the hepatic sympathetic nerve system in the upregulation of serum IL-6 during various kinds of stress (15,16). Kitamura <i>et al</i> (24) showed that immobilization stress induced IL-6 mRNA expression in the liver in parallel with elevations in the plasma IL-6 level. A large body of evidence indicates that endogenous norepinephrine, which is released from the end terminal of the hepatic sympathetic nerve, is responsible for stress-induced IL-6 production in the liver, thereby increasing the IL-6 levels in blood. Furthermore, IL-10 is a Th2-secreted counter-regulatory factor. IL-10 levels in GRwt/wt and GRwt/Qn mice tended to increase in parallel with elevations in the plasma IL-6 level. A large body of evidence indicates that endogenous norepinephrine, which is released from the end terminal of the hepatic sympathetic nerve, is responsible for stress-induced IL-6 production in the liver, thereby increasing the IL-6 levels in blood. Furthermore, IL-10 is a prototypical anti-inflammatory cytokine originally identified as a Th2-secreted counter-regulatory factor. IL-10 inhibits the synthesis and release of proinflammatory cytokines such as IL-6 and TNF, and also suppresses cellular immunity (25,26). In the present study, a difference in the stress-induced IL-10 response among the GR polymorphic lines was observed. IL-10 levels in GR^{Qn/Qn} and GR^{Qn/Qb} mice tended to increase in response to exposure to WRS, whereas the levels in GR^{Qn/Qb} mice remained unaffected. Thus, the ratio of IL-6/IL-10 was significantly increased as compared to GR^{wt/wt} mice (p<0.05). These results suggest that GR polymorphism affects Hsp response to stress. Although further studies are needed to clarify the area where Hsp70 is expressed in abundance, the injury may become more severe in cases where substantial leakage of proteins into blood has occurred.

In conclusion, we conducted a genetic screening for the polymorphic lines of GR, GR^{Qn/Qn}, GR^{Qn/Qb}, and GR^{Qn/Qb}, in the commonly used mouse strain and investigated the involvement of the GR polymorphism in stress response by using WRS. Our results suggested that the GR gene polymorphism significantly affected the stress-induced output, including gastric lesion index, and the serum corticosterone, serum cytokines, and serum Hsp70 levels. The present study may provide insights into the role of GR in individual stress responses.

Acknowledgements

This study was supported, in part, by a Grant-in-Aid for Scientific Research (No. 19590684) and by Research Project Grants (Nos. 20-4090 and 21-415) from Kawasaki Medical School.

References