The role of ghrelin in energy homeostasis and its potential clinical relevance (Review)

KAI-CHUN CHENG, YING-XIAO LI, AKIHIRO ASAKAWA and AKIO INUI

Department of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8520, Japan

Received June 10, 2010; Accepted August 16, 2010

DOI: 10.3892/ijmm_00000524

Abstract. The novel gastric hormone ghrelin, a 28-amino acid peptide, has been identified as a potent growth-hormone secretagogue. Ghrelin production is regulated by nutritional and hormonal factors. Besides stimulating growth hormone secretion, studies show that ghrelin exerts a number of central and peripheral actions such as the regulation of food intake, the control of energy balance, glucose metabolism and insulin release, cardiovascular actions, the stimulation of gastric acid secretion, and motility. The broad spectrum of biological activities associated with ghrelin continues to expand. In the future, the diverse functions of ghrelin raise the possibility of its clinical application in a large number of pathological conditions.

Contents

1. History
2. Various forms
3. Mechanisms of action
4. Major functions
5. Role of ghrelin in disease
6. Conclusion

1. History

Ghrelin was first reported by Kojima et al in 1999, as an endogenous ligand for the ‘orphan’ growth hormone (GH) secretagogue (GHS) receptor (GHS-R) (1,2). A group of peptidyl and non-peptidyl synthetic compounds with potent in vitro growth hormone-releasing activity, called GHSs, have since been developed. The receptor binding sites for GHSs have been found to be distinct from the GH-releasing hormone (GHRH) receptor. Radiolabeled GHSs have been displaced by other GHSs, but not by GHRH or somatostatin. GHSs and GHRH have shown synergistic effects on the GH release, suggesting that they act, in part, via different mechanisms (3-5). GHRH increased intracellular cyclic AMP via its receptor, while GHSs increased the concentration of free intracellular calcium (6). The existence of an endogenous substance that can activate the GHS-R could be considered.

Initially, the Kojima research team conducted studies to identify the GHS-R ligand. When they assayed for GHS-R-expressing cells in stomach extract, they observed abundant levels of intracellular calcium release in all the fractions. On the basis of this phenomenon and the results from other experiments, they speculated that an active peptide in the stomach could have damaged the cells. Then, in an assay using a small amount of stomach extract, activity was observed in the fractions of molecular weights between 3000 and 4000 Da. They synthesized the ligand peptide but it was inactive. The structures of the purified and synthetic ligands were compared. Their HPLC elution positions were different, and the molecular weight of the purified peptide was greater than that of the synthetic peptide. A functioning peptide with an octanoyl-modified structure was synthesized and purified by HPLC. The structure of ghrelin is a peptide hormone in which the serine at position 3 is n-octanoylated, a modification essential to the activity of the hormone (1,7). The name, ghrelin, is based on its role as a GH-releasing peptide, with reference to the Proto-Indo-European root ‘ghre’, meaning to grow, and ‘lin’, a common suffix for certain hormones (8).

2. Various forms

The ghrelin gene consists of 4 exons and 3 introns (9). This gene encodes the 117 amino acid, pre-proghrelin, both in rats and humans. In addition to ghrelin, des-Gln14-ghrelin is also produced, although in smaller quantities, by stepwise enzymatic processing (10). The cleaved protein consists of 28 amino acids with serine octanoylated at position 3. The N-octanoyl group is essential for the induction of GH secretion (1) and critical for the development of active peptides and peptide-like substances (11).

Ghrelin is the endogenous ligand for GHS-R and has been implicated in the regulation of food intake and energy homeostasis. Ghrelin is produced primarily by the cells in the oxyntic glands of the stomach or intestinal wall (12-15). Two molecular forms of ghrelin are found in the stomach:
The 28-amino acid ghrelin, with the n-octanoylated serine at position 3, and the 27-amino acid, des-Gln14-ghrelin, produced by alternative splicing of the ghrelin gene (1,10). The acylation appears to be essential for the GH-releasing activity of both natural forms of ghrelin, although des-acyl ghrelin could have some additional biological activities, such as acting as a survival factor in the cardiovascular system (16). Other minor forms of ghrelin are present in human plasma and the stomach and these forms have been determined as total immunoreactivity by conventional radioimmunoassay based on the carboxy terminal fragment of ghrelin (2). Structural activity studies have shown that the 5 amino-terminal residues retain full functional activity (11).

Obestatin, a novel 23-amino acid peptide identified in the rat stomach, was also found by comparative genomic analysis to be a derivative of the mammalian pre-proghrelin gene, which also encodes ghrelin (17). It was originally suggested that obestatin binds to the orphan G protein-coupled receptor (GPR), named GPR39 (17). Increased obestatin, decreased ghrelin levels and a decreased ghrelin/obestatin ratio characterize obesity in women (18), and plasma obestatin levels are low in patients with type 2 diabetes mellitus and impaired glucose intolerance (19). Both obestatin and ghrelin levels are increased in anorexic subjects and decreased in human obesity, suggesting that obestatin is a nutritional marker reflecting body adiposity and insulin resistance.

3. Mechanisms of action

Ghrelin acts as an orexigenic endocrine signal that communicates peripheral caloric intake to the brain centers for energy homeostasis. The pathways that mediate the effects of ghrelin on appetite and food intake have been widely studied. In the hypothalamus, GHS-R mRNA is expressed in neurons containing neuropeptide Y (NPY; which stimulates the NPY-Y1 and Y5 receptors), agouti-related protein (AGRP; which blocks the melanocortin MC3 and MC4 receptors), pro-opiomelanocortin (POMC), and GHRH-containing neurons. These NPY/AGRP-containing neurons express ghrelin receptors on NPY/AGRP-containing neurons (and on POMC-containing neurons) and release γ-aminobutyric acid when activated by ghrelin. Thus, anorectic neurons are inhibited indirectly by ghrelin (14). Both the NPY/AGRP- and the POMC/CART-containing neurons terminate on the POMC/CART-containing neurons and release γ-aminobutyric acid when activated by ghrelin. Therefore, ghrelin can be viewed as a physiological survival mechanism. Due to its appetite-increasing effect, ghrelin helps stimulate food consumption and fat storage, thereby increasing chances for survival during times of famine (30). In human subjects, plasma ghrelin levels increase nearly 2-fold immediately before meals and drop within 1 hour after eating, in a pattern similar to that of serum insulin (31). Plasma ghrelin levels in fasting human subjects display a circadian pattern with spontaneous rises and declines at customary mealtimes (32). Prandial changes in plasma ghrelin levels occur in association with changes in hunger scores, even when external cues related to time of day have been removed from the environment (33). These findings, together with the findings of a rapid decrease in plasma ghrelin after oral glucose load, suggest that plasma ghrelin plays a role in meal initiation and that it reflects the short-term energy balance (34).

In addition to its role in meal initiation and short-term energy balance, ghrelin is involved in the regulation of long-term energy homeostasis. Several human studies have focused on the changes in plasma ghrelin levels in abnormally thin and obese subjects. Plasma ghrelin levels were found to be higher in patients with anorexia nervosa compared to healthy subjects, and weight gain reduced plasma ghrelin levels to normal in these patients (35). Post-prandial ghrelin suppression was also normal in anorexic patients (36). The reason why anorexic patients eat less than the required quantity in spite of their high fasting plasma ghrelin concentration, is not entirely understood. One possible explanation could be a decreased sensitivity or resistance to ghrelin. Alternatively, the cortical overexpression of ghrelin hormonal effects is also possible.

Ghrelin and metabolism

Ghrelin and food intake. Ghrelin was the first hormone to be identified as a food intake stimulatory signal originating from the stomach. The peripheral or intracerebroventricular administration of ghrelin induces adiposity and weight gain in rodents (28,29). The GH-independent effects of ghrelin on food intake and energy homeostasis can be viewed from an evolutionary perspective as a physiological survival mechanism. Due to its appetite-increasing effect, ghrelin helps stimulate food consumption and fat storage, thereby increasing chances for survival during times of famine (30). In human subjects, plasma ghrelin levels increase nearly 2-fold immediately before meals and drop within 1 hour after eating, in a pattern similar to that of serum insulin (31). Plasma ghrelin levels in fasting human subjects display a circadian pattern with spontaneous rises and declines at customary mealtimes (32). Prandial changes in plasma ghrelin levels occur in association with changes in hunger scores, even when external cues related to time of day have been removed from the environment (33). These findings, together with the findings of a rapid decrease in plasma ghrelin after oral glucose load, suggest that plasma ghrelin plays a role in meal initiation and that it reflects the short-term energy balance (34).

In addition to its role in meal initiation and short-term energy balance, ghrelin is involved in the regulation of long-term energy homeostasis. Several human studies have focused on the changes in plasma ghrelin levels in abnormally thin and obese subjects. Plasma ghrelin levels were found to be higher in patients with anorexia nervosa compared to healthy subjects, and weight gain reduced plasma ghrelin levels to normal in these patients (35). Post-prandial ghrelin suppression was also normal in anorexic patients (36). The reason why anorexic patients eat less than the required quantity in spite of their high fasting plasma ghrelin concentration, is not entirely understood. One possible explanation could be a decreased sensitivity or resistance to ghrelin. Alternatively, the cortical overexpression of ghrelin hormonal effects is also possible.

Ghrelin and insulin secretion. Ghrelin inhibits the effects of insulin on glycogen synthesis and gluconeogenesis in vitro

CHENG et al.: GHRELIN AND ITS POTENTIAL CLINICAL RELEVANCE
In human subjects, acute ghrelin administration induces hyperglycemia and reduces insulin secretion (37). Changes over time in plasma glucose and serum insulin concentrations after acute ghrelin administration suggest that ghrelin could have a direct glycogenolytic effect (38). In healthy obese males, the 2-month treatment with oral GHS failed to influence fasting concentrations of plasma glucose and serum insulin, but an impaired glucose tolerance was observed after an oral glucose load (39). Substantial amounts of non-acylated ghrelin can also be found in human plasma. The simultaneous administration of ghrelin and non-acylated ghrelin prevents the acylated ghrelin-induced rise in serum insulin and plasma glucose levels, and non-acylated ghrelin alone, or in combination with acylated ghrelin, improves

Table I. Effects of ghrelin.

<table>
<thead>
<tr>
<th>Target</th>
<th>Physiological or pathological role</th>
</tr>
</thead>
<tbody>
<tr>
<td>GH secretion</td>
<td>Stimulates GH secretion</td>
</tr>
<tr>
<td>Food intake and energy homeostasis</td>
<td>Stimulates appetite and food intake Increases body weight</td>
</tr>
<tr>
<td>Insulin secretion, glucose and lipid metabolism</td>
<td>Inhibits insulin secretion and action Increases blood glucose Stimulates lipogenesis and proliferation of adipocytes, inhibits lipolysis</td>
</tr>
<tr>
<td>Gastrointestinal system</td>
<td>Stimulates gastric secretion and motility Protects against mucosal damage</td>
</tr>
<tr>
<td>Cardiovascular system</td>
<td>Decreases blood pressure Improves endothelial function Increases stroke volume and cardiac index Suppresses sympathetic activity Improves cardiac cachexia Decreases apoptosis of cardiomyocytes Protects against ischemic/reperfusion injury</td>
</tr>
<tr>
<td>Immune system</td>
<td>Stimulates immune cell proliferation Decreases pro-inflammatory cytokines</td>
</tr>
</tbody>
</table>

(37). In human subjects, acute ghrelin administration induces hyperglycemia and reduces insulin secretion (37). Changes over time in plasma glucose and serum insulin concentrations after acute ghrelin administration suggest that ghrelin could have a direct glycogenolytic effect (38). In healthy obese males, the 2-month treatment with oral GHS failed to influence fasting concentrations of plasma glucose and serum
insulin sensitivity (40). As non-acylated ghrelin does not bind to GHS-Rs, there could be an as yet unidentified receptor, which mediates the effects of non-acylated ghrelin (41).

Ghrelin as an immunomodulator. Ghrelin stimulates the thymus and T cells during aging in humans and rodents. The thymus involutes and T-cell production declines. However, the chronic administration of a ghrelin mimetic to old mice restored GH/insulin-like growth factor I levels and stimulated growth, differentiation and cellularity of the thymus, in addition to increasing T-cell production (42).

Ghrelin also modulates the production of pro-inflammatory cytokines. In rodents, ghrelin attenuated endotoxin-induced anorexia, reduced cytokine production, and improved mortality associated with lipopolysaccharide (LPS)-induced endotoxic shock (43-45). In a well-designed series of studies, Dixit et al showed that ghrelin and the GHS-R are found in human T cells and monocytes, where ghrelin specifically inhibited the chronic synthesis of pro-inflammatory anorectic cytokines such as leptin, interleukin 1β (IL-1β), IL-6, and tumor necrosis factor α (46). Ghrelin also inhibited the LPS-induced production of these cytokines in spleen and liver. Remarkably, ghrelin reduced IL-1β and IL-1α levels in sham (non-LPS)-treated mice (46). Furthermore, ghrelin treatment inhibited leptin-induced cytokine synthesis, and leptin-augmented GHS-R expression in human T cells. The regulation of this network could have widespread implications for the development of wasting diseases, aging and frailty (46).

Ghrelin and gastrointestinal motility. Plasma ghrelin levels have been shown to correlate with gastric expansion. In rats, intravenously administered ghrelin stimulates gastric motility and secretion in a dose-dependent manner. The Intracerebroventricular administration of ghrelin also stimulates gastric acid secretion in anesthetized (47), but not in conscious rats (48). Furthermore, ghrelin appears to exert a gastro-protective effect via nitric oxide- and capacsin-sensitive neurons (49).

The peripheral and central administration of acyl ghrelin induces faster motor activity in the duodenum of conscious freely-fed rats, while it increases phase III-like contractions in both the antrum and duodenum of conscious, fasted rats (50). These actions occur through brain mechanisms that involve GHS-R and NPY (51). Acyl ghrelin also stimulates gastric phase III of the migrating motor complex and solid gastric emptying in healthy human volunteers (52). To date, studies using canine and rodent models have indicated that acyl ghrelin is the only agent that could reverse post-operative gastric ileus (53,54). All the evidence suggests that acyl ghrelin can modulate cardiovascular function and secretion via extracellular and endothelial cells through the activation of extracellular signal-regulated kinase 1/2 and Akt serine kinases. It should be noted that, although cardiomyocytes bind to ghrelin with high affinity, they do not express GHS-R1a. Taken together, it is reasonable to suggest the existence of other new GHS-R subtype(s) distinct from GHS-R1a in the cardiovascular system (65).

5. **Role of ghrelin in disease**

Ghrelin and obesity. Obesity is characterized by blunted GH secretion that could help to maintain the obese state and is reversed by weight loss (66). Fasting plasma ghrelin concentrations in obesity are significantly lower and are negatively correlated with body mass index, percentage body fat, and/or fasting insulin and leptin concentrations (67). Low levels of
Osteoporosis or metabolic
Ileus
Gastroparesis
Dilated cardiomyopathy or CHF
Anorexia or eating disorders
or HIV infection)
insufficiency, malignancy,
gastrectomy, chronic organ
Cachexia (associated with aging,
hormone deficiency (diagnosis)
Prader-Willi syndrome
Growth hormone deficiency
Simple obesity
Ghrelin agonists
Ghrelin antagonists
Growth hormone deficiency
(therapy)
Hypopituitarism or growth
hormone deficiency (diagnosis)
Cachexia (associated with aging,
gastrointestinal, chronic organ
insufficiency, malignancy,
or HIV infection)
Anorexia or eating disorders
Dilated cardiomyopathy or CHF
Atherosclerosis
Gastroparesis
Ileus
Osteoporosis or metabolic
bone disease

*Conditions in which ghrelin agonists can serve as useful diagnostic agents are indicated. CHF, congestive heart failure; HIV, human immunodeficiency virus.

ghrelin could contribute to the decreased GH secretion observed in obese patients (67). Plasma ghrelin levels are also negatively correlated with plasminogen activator 1 levels, which are elevated in insulin-resistant subjects and are associated with increased cardiovascular risk of atherothrombosis (68). Decreased ghrelin secretion in established obesity could be a physiological adaptation to long-term positive energy balance, although a particular subset of obesity could be associated with high levels of ghrelin (69).

Despite its low levels, like NPY, ghrelin can act to maintain increased body weight (70,71), since weight loss increases ghrelin levels at a rate proportionate to the amount of weight loss (69). The lack of suppression of plasma ghrelin after a meal in obese subjects could contribute to increased food consumption (72).

Ghrelin and eating disorders. Anorexia nervosa is a psychopathological disorder that presents with neuroendocrine alterations reflecting starvation (73). Patients experience hunger, but are prevented from eating by an intense fear of losing control over their eating and becoming overweight. Plasma ghrelin concentrations in patients with anorexia nervosa are markedly elevated in comparison to those of healthy controls, although there could be some patients with normal (not increased) ghrelin levels (64-77). Plasma ghrelin levels do not drop after food intake, suggesting that a single meal is insufficient to suppress the drive to eat in the subjects (78). NPY concentrations in the cerebrospinal fluid are also increased in anorexia nervosa (75-79). Ghrelin levels return to normal after partial weight recovery, suggesting a physiological effect of ghrelin to compensate for the lack of nutritional intake and energy stores. However, the similarity of the ghrelin resistance model to the leptin resistance model remains unknown (36). The increased ghrelin levels observed in anorexia nervosa patients could explain the relatively high plasma GH concentrations also observed in these patients. Although there could be no difference in ghrelin secretion between restrictive vs. bulimic anorexia nervosa (77), plasma ghrelin is markedly elevated in patients with bulimia nervosa (80), suggesting that abnormal eating behaviors with habitual binge eating and purging can affect ghrelin secretion. It remains to be examined whether binges in bulimia nervosa are the consequence of elevated ghrelin.

Ghrelin and cardiovascular disease. The discovery of ghrelin as an endogenous GHS immediately prompted research on its hemodynamic effect, as GH is known to play a role in the maintenance of cardiovascular health (81). However, the possibility that GHSs can have direct cardiovascular effects, independent of GH release, has been strongly supported by different experimental approaches. Ghrelin can be synthesized by the cardiomyocytes of both human and murine origin, and it is secreted by HL-1 cells (a cultured line derived from murine atrial cardiomyocytes showing a heart phenotype) (82) and is widely used as an in vitro model of cardiac biology (83), as well as by human cardiomyocytes in primary culture (84).

The administration of ghrelin has been found to reduce cardiac afterload and increase cardiac output without increasing heart rate in healthy volunteers (64), to induce vasodilation (85,86), and to improve the hemodynamics of patients with chronic heart failure (87). Chronic heart failure-associated cachexia is attenuated by ghrelin in rats (88), and in humans is accompanied by above normal ghrelin levels, possibly as a compensatory mechanism in response to a catabolic–anabolic unbalance (87). Ghrelin also regulates cardiovascular function in rats suffering from septic shock and exerts a protective effect against ischemic injury in rat hearts (89). Similar cardiovascular effects have been observed in rabbits (90). As stated above, in both humans and experimental animals, the cardiovascular effects of ghrelin seem to not be mediated by GH (82-90). This indicates that one of the multiple mechanisms by which obesity favors cardiac pathology could be its association with low ghrelin levels, which can reduce cardioprotection.

Ghrelin and cachexia. Cancer patients treated with cytotoxic drugs experience a number of adverse effects, including delayed gastric emptying, early satiety, anorexia, nausea and vomiting, known as cancer chemotherapy-induced dyspepsia. In a mouse model of cisplatin-induced chemotherapy-associated dyspepsia, the administration of ghrelin (1 mg/kg i.p., bid) significantly increased food intake at 24 and 48 h after cisplatin treatment and improved the cisplatin-induced delay of gastric emptying (91). It has also been suggested that an adaptive up-regulation of ghrelin and GHS-R mRNA expression occurs in response to toxic challenges in the gut during cancer chemotherapy dyspepsia. Levels of plasma ghrelin were enhanced in patients with functional dyspepsia (92). Moreover, the ability of ghrelin to activate vagal afferent pathways, as well as central hypothalamic and peripheral enteric nerve-mediated responses, suggests that the ghrelin
effect could be similar to the anti-emetic effects of ondansetron, a 5-HT3 receptor antagonist with both central and peripheral sites of action, and could be used in the treatment of chemotherapy-induced nausea and vomiting (Table II) (93,94).

6. Conclusion

Ghrelin is a novel gastric hormone that was first recognized in 1999 as a mediator of GH release. Since GHs are anabolic, an important function of ghrelin could be to co-ordinate energy needs with the growth process. Later discovered biological roles of ghrelin imply that it could have many physiological functions as well. Ghrelin, a peptide hormone produced primarily in the stomach, has potent GH-releasing, orexigenic and adiopogenic activities, and exerts important effects on the cardiovascular and gastrointestinal systems. In addition, ghrelin plays important roles in glucose metabolism and insulin secretion. Therefore, ghrelin appears to be involved in the pathophysiological mechanisms of several human disorders, including disturbances of appetite, energy homeostasis and glucose metabolism. In addition, the diverse functions of ghrelin raise the possibility of its clinical application in a large number of pathological conditions. It could be used, for example, for the diagnosis of GH deficiency or for the treatment of cachexia, wasting syndrome, heart failure and gastric motility disturbances. Ghrelin antagonists could also be useful in the treatment of obesity.

References

14. Dass NB, Munonyara M, Bassil AK, et al: Growth hormone secretagogue receptors in rat and human gastrointestinal tract and the effects. Toki H: Gut hormone and peripheral sites of action, and could be used in the treatment of chemotherapy-induced nausea and vomiting (Table II) (93,94).

