Abstract. HBx is an oncogenic tumor-associated antigen and is dominantly expressed in hepatitis and hepatoma tissues, the induction of active cellular responses against HBx should be a promising approach for the treatment of hepatitis B virus-related hepatocellular carcinoma. The present study was designed to test whether a replication-defective adenovirus vaccine expressing HBx antigen could be effectively used in the immunotherapy of hepatocellular carcinoma. To validate the possibility, we developed a novel HBx-positive hepatocellular carcinoma in mice by inoculated the pcDNA-HBx transfected Hepa1-6 cells subcutaneously into the right flank of mice. We found that immunotherapy with Ad-HBx was effective at both protective and therapeutic antitumor immunity in the hepatoma models in immune-competent mice. Histological examination revealed that Ad-HBx treatment led to significantly increased induction of apoptosis, tumor necrosis, and elevated CD8+ lymphocyte infiltration. In addition, the induction efficacy of the CTL response is dramatically enhanced by immunotherapy. Cytokine analysis confirmed that the antitumor efficacy of Ad-HBx may mostly result from cellular immunity. Our findings may prove useful in development of adenovirus vaccine based on HBx antigen to the treatment of HBV-associated hepatocellular carcinoma.

Introduction

Hepatitis B virus (HBV) is a small DNA virus belonging to the family hepadnaviridae which replicates the genome by reverse transcription (1). HBV infection are strongly associated with the development of hepatocellular carcinoma (HCC), which is one of the most common and recurrent malignancies worldwide (2). Hepatic resection and liver transplantation is the choice of treatment for hepatocellular carcinoma, however, few patients have the opportunity to undergo these procedures. In addition, high recurrent rate after resection and resistance to conventional treatments have rendered the disease a very serious health problem (3). Thus, the development of novel strategies against HCC is much needed (4-6).

Of the interventions designed to treat cancer, immunotherapy with CTLs is increasingly being recognized as one of the most efficient strategies (7). One key factor in the development of a CTL-based therapy is to develop epitope-based vaccines that elicit this response (8,9). Virus-associated malignancies offer a distinct advantage in this regard since therapy can be directly targeted toward viral antigens expressed by the tumor (10). Previous studies have shown that virus antigen-based vaccines have significant results in both animal models and patients, which strongly suggest that virus-specific CTLs might be the important elements that regulate the immune control of virus-associated malignancies (11).

HBx, an HBV-encoded protein with multiple functions in cellular signal transduction, transcription pathways and HBV replication, has been recognized as an oncogene and closely relevant with the development of HBV-mediated HCC (12,13). It has been demonstrated that HBx expression is present in ~80% of the HCC cases including both carcinomas and pericancerous liver tissues (14). Previous studies have showed that vaccines based on HBx full-length sequence or specific epitopes could elicit specific antitumor immune responses (15-17).

We developed a replication-defective adenovirus vaccine expressing HBx Ag for the treatment of HBx-positive
hepatoma. Our results demonstrated that the vaccine could successfully elicit HBx-specific CD8+ T lymphocytes and induce significant antitumor effects.

Materials and methods

Cell lines and mice. 293A (human embryonic kidney), Hepa1-6 (HCC derived from C57 BL/6 mouse) cell lines were obtained from the American Type Culture Collection. Cells were cultured in DMEM supplemented with 10% fetal bovine serum (FBS), maintained in a 37°C incubator with a humidified 5% CO2 atmosphere. Female C57BL/6 mice aged 6-8-weeks were purchased from Laboratory Animal Center of Sichuan University and maintained in pathogen-free conditions. All procedures were reviewed and approved by the institute's Animal Care and Use Committee.

Generation of recombinant adenovirus. Recombinant adenovirus vectors carrying HBx gene (Ad-HBx) was generated with a ViraPower adenovirus expression system (Invitrogen) as described previously (18). The recombinant adenovirus without foreign gene (Ad-null) served as a control. All virus particles were amplified in HEK 293A cells and purified by cesium chloride gradient centrifugation, titrated as PFU per milliliter and stored at -80°C.

Plasmid construction and stable transfection. HBx expression plasmids were constructed as follows: HBx was amplified by polymerase chain reaction (PCR) with upstream primer 5'-TTA ACCATGCGTCTAGGCTGTGCTGC-3' and downstream primer 5'-GGCTCAAGGTAGCCAGAGGTGAAAG TTG-3'. The PCR product was digested with NcoI and XhoI, and was inserted into eukaryotic expression vector pcDNA3.1 (+) (Invitrogen). Verification of the recombinant XhoI and was designated as pcDNA-HBx. pcDNA3.1 or pcDNA-HBx were transfected into Hepa1-6 cells using Lipofectamine™ 2000 (Invitrogen). At 48 h post-transfection, cells were split at a 1:10 ratio and cultured in the presence of 400 μg/ml G418. After 28 days in selective medium, G418-resistant colonies were isolated. Then, the expression of HBx was detected by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting.

Vaccine immunization. Mice were immunized s.c. with normal saline (NS) (100 μl each), Ad-null (10⁴ pfu/100 μl each) or Ad-HBx (10⁴ pfu/100 μl each) once weekly for 4 weeks. One week after the final immunization, 2x10⁶ Hepa1-6/HBx cells were s.c. injected into the right flank. For an investigation of the therapeutic effect against the established tumors, ten mice in each group were treated with subcutaneous injection of the adenovirus vaccines or NS once weekly for 4 weeks on day 7 after subcutaneous introduction of 2x10⁶ Hepa1-6/HBx cells. Tumor dimensions were measured with calipers every 3 days and tumor volumes were calculated according to the following formula: V=0.52 x length x width². The mice were sacrificed when they became moribund. The date of sacrifice was recorded to calculate the survival time.

Quantitative assessment of apoptosis. Tumor species were prepared as described previously (19). The presence of apoptotic cells within the tumor sections was determined using the In Situ Cell Death detection kit (DeadEnd™ Fluorometric TUNEL System, Promega), according to the manufacturer's protocol. In tissue sections, four equal-sized fields were randomly chosen and analyzed. The apoptotic index (AI) was defined as follows: AI (%) = 100 x apoptotic cells/total tumor cells.

Histological analysis. Tumors from each group were embedded in paraffin, sections 3-5 μm were stained with hematoxylin and eosin (H&E). Immunofluorescence staining was used to determine the infiltration of lymphocytes in the tumor tissue. Frozen sections were blocked (10% FBS, 3% BSA) for 30 min before staining with anti-CD4 (FITC conjugate) and anti-CD8 (Cy5-conjugate) monoclonal antibodies. Fluorescence was visualized, and images were captured with fluorescence microscopy (Leica).

Flow cytometry. Splenocytes were isolated as described above and placed in ice-cold PBS supplemented with 5% FBS and 0.1% sodium azide. Then the cell suspensions were stained with a combination of fluorochrome-conjugated antibodies, including fluorescein isothiocyanate (FITC)-conjugated anti-mouse CD4 and phycocerythrin (PE)-conjugated anti-mouse CD8, cyanine5 (Cy5)-conjugated anti-mouse CD3. After staining, multiple-color flow analyses were performed using flow cytometer (Beckman Coulter). Twenty thousand events were recorded per sample in an appropriately gated region (lymphocyte gate).

Cytotoxicity assay. A 4-h ¹ⁱ⁴Cr release assay was performed to evaluate the adaptive cellular immune response as described previously (20). Briefly, four weeks after the final immunization, three mice in each group were sacrificed, spleen T lymphocytes obtained from the mice were isolated from single-cell suspensions with Nylon Fiber Column T (LType, Wako) as CTL effector cells. Hepa1-6/HBx cells (1x10⁶) as target cells were incubated at 37°C with 200 μCi sodium chromate (Sigma) for 2 h. After washing 3 times, ¹ⁱ⁴Cr-labeled target cells were seeded into 96-well V-bottomed plates at 1x10⁶ cells per well in 100 μl complete RPMI-1640. Effector cells from spleen were seeded into triplicate wells containing the target cells at various effector/target (E:T) cell ratios, making a final volume of 200 μl. Plates were incubated at 37°C in a humidified incubator with 5% CO2 for 4 h. Plates were centrifuged, and the supernatant (100 μl) was removed from each well to assess the ¹ⁱ⁴Cr release using a gamma radiation counter (Perkin-Elmer). The activity was calculated by the formula: %cytotoxicity = [(experimental release-spontaneous release)/maximum release-spontaneous release] x100%.

ELISA. IFN-γ, IL-2 and IL-4 were determined as previously described (21). Briefly, splenocytes obtained from the immunized or control mice were prepared as described above, and were plated at 2x10⁶ cells per well in flat-bottom microtiter plates. These splenocytes were restimulated with Ad-HBx (4x10⁴ PFU). After 72 h at 37°C, 100 μl of supernatant was harvested and tested for IFN-γ, IL-2 and IL-4 by ELISA kit (BD PharMingen, San Diego, CA).
In vivo depletion of immune cell subsets. Immune cell subsets were depleted as described previously (22,23). Mice were injected intraperitoneally with 500 μg of either the anti-CD4 (clone GK 1.5, rat IgG), anti-CD8 (clone 2.43, rat IgG), anti-natural killer (NK) (clone PK136) monoclonal antibody (mAb), or isotype controls 1 day before immunization and then twice per week for 3 weeks. Mice were immunized as described above and ~2x10^6 Hepa1-6/HBx cells were challenged after the fourth immunization. These hybridomas were obtained from the American Type Culture Collection (Manassas, VA). The depletion of CD4^+, CD8^+, and NK cells was consistently >98%, as determined by flow cytometry.

Statistical analysis. Statistical evaluations of numerical variables were performed using One-Way ANOVA test in multiple groups. For the survival time of animals, Kaplan-Meier curves were established for each group, and the survivals were compared by means of the log-rank test. Significance was defined as P<0.05.

Results

Establishment of a mouse hepatoma cell line expressing HBx. To investigate the antitumor effect of adenovirus vaccine expressing HBx in immune-competent mice, eukaryotic plasmid expressing HBx was constructed and was stably transfected into mouse hepatoma Hepa1-6 cells. The expression of HBx in the stable cell line was detected by RT-PCR (Fig. 1A) and Western blotting (Fig. 1B).

Induction of protective antitumor immunity. To examine whether tumorigenesis could be inhibited by adenoviral vaccines expressing HBx, C57BL/6 mice were immunized once weekly for 4 weeks. As shown in Fig. 2A, Ad-HBx treatment significantly delay the growth of tumors as compared
LI et al: T LYMPHOCYTE RESPONSES AGAINST HCC BY Ad-HBx

Figure 3. Induction of tumor cell apoptosis. Apoptotic tumor cells within tumor tissues were elevated by TUNEL assays, as described in Materials and methods. Representative sections from tumor tissues are presented: (A) NS (normal saline); (B) Ad-null; and (C) Ad-HBx. The treatment with Ad-HBx showed an apparent increment of apoptotic cells within the tumor tissues. Bar represented apoptotic index within tissues (D). *P<0.01, significantly different from the normal saline (NS) or Ad-null groups.

Figure 4. Histological and fluorescence analysis of infiltrated lymphocytes. (A) Histological examination of tumors by H&E staining was performed. Lymphocyte infiltration was significantly enhanced in the margin and central regions in Ad-HBx treated group. FITC-conjugated Anti-CD4 (B) and Cy5PE-conjugated anti-CD8 (C) monoclonal antibodies were used to detect lymphocytes infiltrated into tumors in situ. Our results demonstrated that the infiltrated lymphocytes were mainly CD8+ cytotoxic lymphocytes.
with NS or Ad-Null immunized groups (P<0.01). To further assess the potential of the vaccines as a therapeutic agent for HCC, the survival of the mice was observed over a period of 75 days (Fig. 2B). NS-treated mice started to die of tumor progression on day 48 and all of them expired by day 66. Ad-null immunized mice started to die on day 51 and all of them died by day 69. In contrast, 80% of mice in the Ad-HBx immunized group survived until the termination of the experiment (day 75). The differential survival rates were statistically significant by log-rank test analysis between Ad-HBx group and the control groups (P<0.01, respectively).

Induction of therapeutic antitumor immunity. The therapeutic efficacy of adenoviral vaccines expressing HBx was next tested in the established tumors. The mice were treated starting at day 7 after the injection of HBx positive Hepa1-6 hepatoma cells, when the tumor was palpable. Significant reduction of tumor growth was observed in the Ad-HBx treated group (P<0.01) (Fig. 2C). The survival of the tumor-bearing mice treated with Ad-HBx was also significantly greater than that of the controls (P<0.01) (Fig. 2D).

Therapeutic effect on apoptosis. To better understand the relationship between antitumor effect and apoptosis of tumor cells, tumors resected 2 weeks after the completion of immunization were subjected to TUNEL assays. An apparent increase in the number of apoptotic cells could be observed in the Ad-HBx treated group (Fig. 3). Data represent the mean apoptotic index ± standard deviations of cancer cells as percent normalized to apoptotic index of cancer cells (Fig. 3D).

Histological analysis. Histologically, tumors from the Ad-HBx treated group showed a significant increase in necrosis as compared with the controls. Lymphocyte infiltration was also remarkably elevated in the tumors of Ad-HBx treatment. To further detect the type of the infiltrated lymphocytes in tumors, anti-CD4 and anti-CD8 monoclonal antibodies were used in immunofluorescence staining. As shown in Fig. 4, the infiltrated lymphocytes were mainly CD8+ cytotoxic T lymphocytes.

Characterization of the lymphocyte population. Splenocytes were isolated from different groups and analyzed with flow cytometry. We found that the CTLs consisted of CD4+ and CD8+ T cells simultaneously. The component of CD8+ T cell was 26.7% in the animals that received Ad-HBx treatment which was larger than that from the NS (18.7%) or Ad-null (17.6%) treated groups. Slightly increased component of CD4+ T cells was also observed in the Ad-HBx immunized group (Fig. 5).

Induction of specific CTL response by immunization of mice with Ad-HBx. To determine whether tumor-specific CTL response could be induced in Ad-HBx-immunized mice, tumor cell cytotoxic activity of CTLs was examined. As shown in Fig. 6A, the lymphocytes from Ad-HBx-immunized mice were able to lyse specific target cells (Hepa1-6/HBx) in an
effector/target (E/T)-dependent manner with statistical significance at E/T ratios ≥10:1. However, the lymphocytes from Ad-HBx-immunized mice, Ad-null-immunized mice and NS-treated mice exhibited the same cytotoxicity to irrelevant target cells (Hepa1-6/3.1). These results demonstrated that HBx could induce tumor-specific CTL response in vivo.

Characterization of cytokines. The spleen cells isolated from the immunized mice or controls were re-stimulated with Ad-HBx and supernatants were harvested. The production of IFN-γ and IL-2 in the supernatants harvested from the spleen cells of Ad-HBx-immunized mice was higher than that of control groups (P<0.05). We did not find any difference in the expression of IL-4. *P<0.01, significantly different from the normal saline (NS) or Ad-null groups.

Function of T-cell subsets in antitumor activity. To explore the roles of immune cell subsets in antitumor activity elicited by HBx, we depleted CD4+ or CD8+ T lymphocytes or NK cells through injection of the corresponding monoclonal antibodies. Mice depleted of CD8+ T lymphocytes and
vaccinated with Ad-HBx were not protected from tumor challenge. In contrast, treatment with mAb against CD4+ or NK cells failed to abrogate the antitumor activity (Fig. 8). These data suggest that HBx-specific CD8+ T lymphocytes are probably responsible for the antitumor activity.

Discussion

HBV are strongly associated with the development hepatocellular carcinoma (HCC) (24,25). Among the four proteins expressed by HBV genome, HBx is a multifunctional regulatory protein participating in viral pathogenesis and in HBV-mediated hepatocarcinogenesis. It has been reported that the development of HCC is critically related to the expression level of HBx protein (26). Moreover, in HCC, HBx protein expression has a higher ratio than PreS2/S, HBV core protein (HBc), and HBV surface protein (27). Thus, developing vaccines based on HBx protein that could elicit significant immune reactions may be a possible strategy against HBV associated carcinomas. Herein, we evaluated the antitumor immune effects of recombinant adenovirus expressing HBx mediated vaccine strategy in a murine model of HBx-positive hepatoma. The present study has, to our knowledge, first demonstrated that recombinant adenovirus encoding HBx as vaccine can induce both protective and therapeutic antitumor immunity against HBx-positive hepatocellular carcinoma. Importantly, the vaccine significantly prolonged the survival time of tumor-bearing animals.

The mechanism by which antitumor immune response against HBx-positive tumors with adenovirus encoding HBx gene in the present study may be in part the result of eliciting the host CTL response against HBx-associated HCC. CD8+ CTLs are considered important elements for protection against various virus-associated malignancies (28). In the present study, apparent infiltration of CD8+ T lymphocytes was observed in the tumor of Ad-HBx treated group, which suggests an onset of immune response in the local mass. Flow cytometric analysis of HBx-specific CTL populations showed that the component of CD8+ T lymphocytes after vaccination with Ad-HBx was larger than that of Ad-null or control groups. Moreover, the depletion of CD8+ T lymphocytes showed complete abrogation of the antitumor immune activity in vivo. Meanwhile, the depletion of CD4+ T lymphocytes or natural killer cells (NK) failed to abrogate the antitumor activity. These findings strongly support the suggestion that elicitation of HBx-specific CD8+ T lymphocytes is responsible for the antitumor activity of the vaccine.

Previous studies have demonstrated that the antitumor immune response against tumors with vaccine may be involved in both humoral and cellular immunity (21). The findings in the present study show that splenocytes obtained from the Ad-HBx-immunized mice secreted increased level of T cytotoxic (Tc) 1-type cytokine (IFN-γ and IL-2), while no difference was found in the expression of Tc 2-type cytokine (IL-4). These findings suggest that the antitumor efficacy of Ad-HBx may mostly result from cellular immunity rather than humoral immunity.

Adenoviral vectors are commonly used for gene delivery as well as vaccine carrier due to their high efficiency and high capacity. The recombinant replication-deficient adenoviral vector has several properties that make it particularly promising candidates for DNA vaccination approaches. Firstly, adenoviruses efficiently infect a variety of target cell types in vitro or in vivo, leading to high levels of protein production in situ (29). Additionally, in a variety of animal models, the inherent immunogenicity of adenoviral vectors have been documented to induce potent cellular and humoral immune responses against the product encoded by the transgene. Antiviral immunity may provide an adjuvant effect in the induction of immune response against tumor-specific antigens in cancer immunotherapy (30,31). Finally, adenoviral vectors deliver tumor antigens into the endogenous antigen processing pathway that directs peptide processing and presentation onto class I MHC. This should be more potent in the activation of CD8+ T cells than soluble protein vaccines because soluble antigens are mostly taken up by the exogenous antigen processing pathway and presented on class II MHC (32).

Collectively, our data in the present study suggest that immunotherapy with Ad-HBx vaccine was effective at both protective and therapeutic antitumor immunity in the hepatoma models. This antitumor effect may result from eliciting the host CTL response against HBx-associated HCC. The present findings may be of importance in further exploration of the potential application of this vaccine in the treatment of HBV-associated HCC.

Acknowledgements

This work is supported by The National Key Basic Research Program (973 Program) of China (2010CB529900 and 2010CB529906), Hi-tech Research and Development Program (863 Program) of China (2006AA02Z488 and 2008ZX10002-023).

References

