Abstract. Airway remodeling in asthma is characterized by increased airway smooth muscle (ASM) mass, accompanied by cell migration. It is well known that the proliferation and migration of ASM cells (ASMCs) play a key role in airway remodeling, but the precise mechanism modulating these cellular events remains unclear. One of the genes most likely to be involved in this process is the phosphatase and tensin homolog (PTEN) gene, whose deletion from chromosome 10 can inhibit the proliferation and migration of many cell types. In this study, we investigated the effects of PTEN on human ASMCs. The cells were infected with recombinant adenovirus containing wild-type PTEN cDNA (Ad-PTEN), and the results were compared with those from the uninfected cells and those infected with the GFP-labeled adenovirus vector. Cell proliferation was measured using the MTT method. Cell migration was determined by wound-healing and transwell assays. The expressions of PTEN, phospho-Akt, Akt, phospho-ERK1/2, ERK1/2, phospho-focal adhesion kinase (FAK) and FAK, were examined by Western blot analysis. The results show that PTEN is expressed endogenously in ASMCs, and that Ad-PTEN inhibits the proliferation and migration of these cells. In addition, the Ad-PTEN treatment decreased the phosphorylation of Akt and FAK but not that of ERK1/2. In conclusion, this study demonstrates that PTEN overexpression inhibits the proliferation and migration of human ASMCs by down-regulating the activity of the Akt and FAK signaling pathways.

Introduction

Airway remodeling, an important feature of asthma, is partly characterized by the increase in the number of airway smooth muscle (ASM) cells (ASMCs) in the airway wall (1-3). It has been suggested that the cell migration contributes to the pathogenesis of ASMC hyperplasia and airway remodeling (4). The migration of these cells to sites close to the disrupted reticular basement membrane, is a process similar to the formation of neointima in atherosclerosis and post-angioplasty restenosis.

The phosphatase and tensin homolog (PTEN) protein is encoded by a tumor-suppressor gene located on human chromosome 10 (5). Deletions and mutations of the PTEN gene have been observed in many types of human cancers, including breast, brain and prostate tumors (6,7). The gene product functions as a dual specificity phosphatase and it modulates protein and lipid phosphatase activity (8). PTEN regulates a number of normal cell processes, such as growth, adhesion, migration and apoptosis (9).

Some studies have shown that the enforced expression of PTEN leads to the decreased activity of Akt/PKB, which is a downstream target of PI3K signaling (10-12). Akt/PKB, a serine-threonine protein kinase, is a critical regulator in many different cellular processes, such as proliferation, apoptosis, cell cycle progression, angiogenesis and migration. PTEN has also been proposed to be a negative modulator of the mitogen-activated kinase (MAPK) pathways, where it blocks Shc phosphorylation (with the exception of the Akt pathway). The inhibition of ERK1/2 MAPK could lead to the inhibition of cell proliferation and motility (8,13,14). The focal adhesion (FA) kinase (FAK) is another important substrate of PTEN. This kinase is a non-receptor protein tyrosine kinase, activated mainly in FAs. It is important in cell-extracellular matrix
a group of cells was kept uninfected (mock), but was incubated in different treatments, as indicated. As a control, an identical culture flasks in DMEM containing 10% FBS. When the cells were suspended in ice-cold 4% paraformaldehyde and twice with ice-cold phosphate buffered saline (PBS), the cells were subcultured and grown to near confluence. After washing, the cells were washed twice with PBS and further incubated with goat anti-rabbit IgG (Bios). The positive specimens were visualized using a microscope and then photographed.

Immunocytochemical characterization. The cells were subcultured and grown to near confluence. After washing twice with ice-cold phosphate buffered saline (PBS), the cells were suspended in ice-cold 4% paraformaldehyde and permeabilized with 0.1% Triton X-100. They were washed and subsequently incubated with anti-α smooth muscle actin antibody (Bios, Beijing, China). After incubation, the cells were washed twice with PBS and further incubated with goat anti-rabbit IgG (Bios). The positive specimens were visualized using a microscope and then photographed.

Adenovirus construction and infection. Recombinant adenovirus encoding human wild-type PTEN cDNA (Ad-PTEN) and a control virus containing no cDNA insert [empty virus, GFP-labeled adenovirus vector (Ad-GFP)], were constructed using the pAdxsi system, and the viruses were amplified as described previously (21). ASMCs were grown in 25 cm² culture flasks in DMEM containing 10% FBS. When the cells were grown to 70% confluence, the medium was changed to DMEM containing no FBS, and viruses were added to the medium at a multiplicity of infection (MOI) of 100 and incubated at 37°C, 5% CO₂ for 4 h. Then the culture medium with 10% FBS was added. After 18 h, the medium was changed to fresh DMEM containing 10% FBS, followed by different treatments, as indicated. As a control, an identical group of cells was kept uninfected (mock), but was incubated for 18 h in the same manner. The infection rate of the cells was ~96% at a MOI of 100.

MTT proliferation assay. Cells were cultured in triplicate in 96-well plates, first for 24 h in DMEM containing 10% FBS, followed by 24 h of arrested growth in DMEM containing 0.1% FBS. Briefly, the cells were either mock-infected or infected with Ad-PTEN or Ad-GFP for 24 h, then the medium was replaced with fresh DMEM containing 10% FBS, and the cells were incubated for an additional 18 h. After discarding the medium and adding MTT (Sigma-Aldrich) solution (5 mg/ml MTT in PBS, 20 μl/well), the cells were incubated for 4 h at 37°C, 5% CO₂. The MTT stain was aspirated, and 150 μl of DMSO were added to each well. The plates were then agitated for 5 min. This was followed by the detection procedure in the Universal Microplate Reader, at 490 nm.

Wound-healing assay. ASMCs were seeded onto 6-well plates and allowed to grow to 90% confluence in DMEM containing 10% FBS, followed by serum deprivation for 24 h in DMEM medium. They were then infected as described above for 18 h. The cell monolayer was wounded using a sterile 200 μl pipette tip to create a cell-free zone. The wounded ASMCs were washed three times with PBS to remove cell debris and then treated with DMEM containing no FBS. The cells were observed 24 h later using an Olympus IX-70 inverted microscope with a Spot RT Color Camera (Diagnostic Instruments). Wound-healing assay was performed at least three times.

Migration assay. Migration assays were performed using the transwell chamber apparatus (Corning, NY, USA). Cell culture membrane inserts (8 μm pore size), in 24-well format (Corning), were coated with 50 μg/ml rat tail collagen I overnight at 4°C and then air-dried for 1 h. The confluent cells were serum-deprived using DMEM containing 0.5% bovine serum albumin (BSA) for 24 h before the migration assays. The cells were either mock-infected or infected with Ad-PTEN or Ad-GFP for 44 h, and were then collected using trypsin (0.025%; Invitrogen Canada Inc.). They were counted, centrifuged and re-suspended at a density of 1x10⁶ cells/ml. Finally, 100 μl of cell suspension were added to the upper compartment of the transwell chamber, and DMEM with 0.1% BSA was added to the lower chamber. Cells in the transwell chamber were incubated at 37°C, 5% CO₂ for 4 h. Non-migrated cells were scraped off and the membranes were fixed with methanol/acidic solution. The cells that migrated to the underside of the membrane were stained with 0.1% crystal violet solution (Sigma-Aldrich). The membranes were mounted on slides and the cells were manually counted (the number of nuclei in a standard central field). The number of cells that migrated to the lower surface of the membrane was counted at x200 magnification. Five random high-power fields were counted for each sample. The data presented in this study are from at least three independent experiments.

Immunohistochemistry for the cell actin cytoskeleton. For fluorescent labeling of the actin cytoskeleton, cells were grown in 35-mm dishes on glass coverslips coated with...
0.10% gelatin. When grown to 70% confluence, they were infected for 48 h as previously described. Following this treatment, the cells were washed once with 1 ml cold PBS for 3 min, before fixing for 20 min in 1 ml formalin (4% formaldehyde in PBS). They were then gently washed three times with 1 ml PBS for 5 min, permeabilized for 10 min with 0.1% Triton buffer (1 μl Triton X-100 in 1000 μl PBS) and then washed again three times in PBS. Rhodamine-labeled phalloidin (Molecular Probes) (1:50 in 1% BSA in PBS) was added onto the center of the cover slip and the slips were incubated for 1 h at room temperature. Finally, the cells were washed three times with 1 ml PBS at room temperature for 3 min. The cover slips were mounted in 50% glycerol in PBS. The images were obtained using a Leica laser scanning confocal microscope (Leica, Germany) at x20 magnification.

Western blot analysis. Forty-eight hours after infection, total protein was extracted by the addition of 200 μl lysis buffer. The samples were separated by SDS 10% polyacrylamide gel electrophoresis (PAGE) and electroblotted onto PVDF membranes. The membranes were incubated overnight at 4°C with the following primary antibodies: PTEN, phospho-Akt (Ser473), total Akt, phospho-ERK, total ERK, phospho-FAK (Try397) and total FAK (all from Cell Signaling Technology, MA, USA), diluted in primary antibody dilution buffer. The levels of proteins and phosphoproteins were estimated using horseradish peroxidase linked secondary antibodies, and the ECL system (Thermo, USA). GAPDH (Santa Cruz, CA, USA) was used as the internal control in all the Western blotting procedures.

Statistical analysis. Data were expressed as the means ± SD of at least three separate experiments. A one-way ANOVA and Student-Newman-Keuls tests were used for statistical analysis, and a value of p<0.05 was considered statistically significant. All analyses were performed using SPSS Version 13.0 (Statistical Software for Social Sciences, Chicago, IL).

Results

Characterization of ASMCs. The confluent ASMC growth exhibited the typical ‘hill and valley’ appearance under an inverted light microscope, and single ASMCs had a fusiform shape. The immunocytochemical staining of human ASMCs with anti-α-actin antibody revealed the positive expression of α-actin.

PTEN overexpression inhibits ASMC migration and actin cytoskeletal rearrangement. In vitro wound-healing assay indicated that, compared to the similar wound area at 0 h, the cell-free areas in the Ad-PTEN group 48 h after wounding, were significantly larger than those in the Ad-GFP and uninfected groups. The difference was not caused by the adenovirus alone, as it had no inhibitory effect on cell migration. No significant differences were observed between the mock and Ad-GFP groups (Fig. 1). These results indicate that the migration of ASMCs was down-regulated by the overexpression of PTEN.

In order to further confirm the effect of PTEN on ASMC migration, we also performed in vitro transwell chamber migration analysis. In the migration assay, growth-arrested ASMCs were plated in transwell plates. As shown in Fig. 2, the number of cells migrating per area in the mock and Ad-GFP groups was higher than in the Ad-PTEN group, and no significant difference was found between the two control groups. These results also demonstrate that PTEN overexpression inhibits ASM cell migration, while endogenous PTEN does not have this effect.

We then examined the F-actin cytoskeletal rearrangement in ASMCs. The cells treated with DMEM alone contained only a few relatively short and flimsy actin stress fibers, and no protrusions were found at the leading edge of the cells at 48 h. The infection with Ad-GFP did not alter the actin fibers. However, PTEN overexpression inhibited most of the actin rearrangement (Fig. 3). These data suggest that PTEN overexpression inhibits the migration of ASMCs, partially by inhibiting the rearrangement of actin filaments.
PTEN overexpression inhibits ASMC proliferation. We also investigated the effect of PTEN overexpression on ASMC proliferation. Growth rates were evaluated by MTT assay (Fig. 4). In the Ad-PTEN group, the cell proliferation rate decreased visibly, but no significant difference was observed between the Ad-GFP and mock-infected group. These findings demonstrate that PTEN overexpression blocks ASMC proliferation.

PTEN overexpression inhibits activation of Akt, but not ERK1/2. We evaluated the phosphorylation status of Akt and ERK1/2 (Figs. 5 and 6). We found that phospho-Akt was significantly attenuated in the cells infected with Ad-PTEN, while phospho-ERK1/2 showed no significant change. This suggests that PTEN overexpression affects ASMC migration and proliferation by inhibiting phospho-Akt activation. However, it had no effect on the phosphorylation level of ERK1/2.

PTEN overexpression blocks activation of FAK. In order to determine whether FAK is involved in the ASMC migration,
we performed immunoblot experiments using a phosphorylation-specific antibody against FAK. PTEN overexpression drastically down-regulated the FAK phosphorylation at Tyr397. The level of phosphorylation of FAK in the Ad-PTEN group was reduced in comparison to the control groups. The mock and Ad-GFP treatments did not affect the FAK phosphorylation significantly. These data show that the phosphorylation level of FAK is well correlated with cell migration. Therefore, we suggest that PTEN overexpression can block ASMC migration via the FAK cascade (Fig. 7).

Discussion

The PTEN tumor suppressor plays an important role in regulating cell proliferation, apoptosis and migration. However, little is known about the role of PTEN in the migration of human ASMCs.

In this study, we confirm the hypothesis that the overexpression of PTEN, an inositol phosphatase specific for PI (3,4), P2 and PIP3 (22), inhibits cultured human ASMC migration and proliferation. PTEN was expressed endogenously in these cells without affecting their migration, but PTEN overexpression inhibited the Akt and FAK pathways in ASMCs, without blocking the phosphorylation of ERK1/2. Taken together, these findings suggest that PTEN overexpression could prevent airway remodeling in asthma.

The results of both the wound-healing and *in vitro* transwell assays confirm that PTEN overexpression inhibits the migration of ASMCs. The changes in the rearrangement of the F-actin cytoskeleton of these cells also show a similar PTEN effect.

There are possibly several mechanisms involved in the inhibition of ASMC migration by PTEN. Firstly, PI3K/Akt signaling has been linked to cellular migration in a variety of cell types (23). In our study, we observed a significant reduction in Akt phosphorylation after Ad-PTEN infection, which is consistent with the results from certain other studies. This suggests that Akt is involved in the PTEN-induced inhibition of cell migration and proliferation as an effector downstream of PTEN (24-26). Secondly, the reduction in FAK phosphorylation indicates that it could also be involved in this process. PTEN has been shown to suppress cell migration and proliferation by dephosphorylating FAK at the Tyr397 autophosphorylation site (13). Intimal hyperplasia has been reported to be correlated with the overexpression of FAK in smooth muscle cells (27), whereas the overexpression of FRNK, an endogenous inhibitor of FAK, inhibits the migration and proliferation of smooth muscle cells (28). All these studies postulate that FAK plays an important role in cell migration, and that it could also be a potential therapeutic target for airway remodeling treatment. We confirm that PTEN overexpression inhibits the migration of ASMCs by lowering the phosphorylation levels in the Akt and FAK pathways. However, the ERK1/2 phosphorylation was not affected. ERK1/2 has been reported to be both a participant and non-participant in chemotaxis (13,29), and its function varies in different cell types. The activation of the ERK1/2 signaling pathway is important in the migration of mouse fibroblasts and human aortic smooth muscle cells (30,31). However, in this study, the overexpression of PTEN did not inhibit the activation of ERK1/2. Our data are consistent with certain previous studies on endothelial cell growth, in which PTEN overexpression did not alter the ERK1/2 activation (32).

ASM mitogenesis depends chiefly on the stimulation of the ERK1/2 and PI3K/Akt pathways (33). Bronchoalveolar lavage fluid from the asthmatic airways increases ERK1/2 activation and the number of cultured human ASMCs (34). This is consistent with the opinion that the ERK1/2 signaling pathway is an important regulator of cell cycle entry and progression in ASM (35). Many studies have investigated the interactions between PI3K and ERK1/2. Both have been shown to be activated as part of a parallel or independent pathway (36,37). In our study, PTEN overexpression, which blocks the PI3K/Akt pathway, inhibits the activation of Akt but not ERK1/2. Other studies have noted that the constitutive activation of PI3K in bovine tracheal myocytes is sufficient for transcription from the cyclin D1 promoter but does not induce ERK1/2 activation (38). Similarly, we could assume that PI3K signaling occurs independently of ERK1/2 in ASMCs.

The proliferation of ASMCs is one of the reasons for the pathological changes in the airway of asthmatic patients. Our data clearly show that exogenous PTEN inhibits the proliferation of human ASMCs. Another study has also demonstrated that PTEN overexpression inhibits cell proliferation, migration, and survival in rabbit VSMCs (18). These data suggest that PTEN plays an important role in the regulation of cell proliferation in certain smooth muscle cells. However, the mechanism of action of PTEN in the proliferation of ASMCs remains poorly understood. It is likely that the inhibition of VSMC proliferation by PTEN was mediated...
in part by an increase in apoptosis (18). However, other findings have indicated that exogenous PTEN suppresses cell growth and cell cycle progression without inducing cell death (39,40). These findings could explain the cell type and species differences in PTEN-regulated apoptosis. The discrepancies could be attributable to the differences in PTEN signaling in VSMC and other cell types. Further studies are required in order to clarify the role of PTEN in ASM cell proliferation during airway remodeling.

In summary, our data demonstrate that PTEN overexpression inhibits the ASM proliferation and migration. These results contribute to a better understanding of the mechanisms by which PTEN suppresses bronchial inflammation and airway remodeling.

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant no. 30770936). We are grateful to the Department of Thoracic Surgery of our hospital for their cooperation in obtaining the resected lung specimens, and we thank Dr. Kenneth M. Yamada (National Institutes of Health, Bethesda, MD) for kindly providing the PTEN cDNA.

References

4. Bentley JK and Hershenson MB: Airway smooth muscle growth and cell cycle progression without inducing cell death (18). However, other findings have indicated that exogenous PTEN suppresses cell growth and cell cycle progression without inducing cell death (39,40). These findings could explain the cell type and species differences in PTEN-regulated apoptosis. The discrepancies could be attributable to the differences in PTEN signaling in VSMC and other cell types. Further studies are required in order to clarify the role of PTEN in ASM cell proliferation during airway remodeling.

In summary, our data demonstrate that PTEN overexpression inhibits the ASM proliferation and migration. These results contribute to a better understanding of the mechanisms by which PTEN suppresses bronchial inflammation and airway remodeling.

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant no. 30770936). We are grateful to the Department of Thoracic Surgery of our hospital for their cooperation in obtaining the resected lung specimens, and we thank Dr. Kenneth M. Yamada (National Institutes of Health, Bethesda, MD) for kindly providing the PTEN cDNA.

References

4. Bentley JK and Hershenson MB: Airway smooth muscle growth and cell cycle progression without inducing cell death (18). However, other findings have indicated that exogenous PTEN suppresses cell growth and cell cycle progression without inducing cell death (39,40). These findings could explain the cell type and species differences in PTEN-regulated apoptosis. The discrepancies could be attributable to the differences in PTEN signaling in VSMC and other cell types. Further studies are required in order to clarify the role of PTEN in ASM cell proliferation during airway remodeling.

In summary, our data demonstrate that PTEN overexpression inhibits the ASM proliferation and migration. These results contribute to a better understanding of the mechanisms by which PTEN suppresses bronchial inflammation and airway remodeling.

Acknowledgements

This study was supported by the National Natural Science Foundation of China (grant no. 30770936). We are grateful to the Department of Thoracic Surgery of our hospital for their cooperation in obtaining the resected lung specimens, and we thank Dr. Kenneth M. Yamada (National Institutes of Health, Bethesda, MD) for kindly providing the PTEN cDNA.

References

4. Bentley JK and Hershenson MB: Airway smooth muscle growth and cell cycle progression without inducing cell death (18). However, other findings have indicated that exogenous PTEN suppresses cell growth and cell cycle progression without inducing cell death (39,40). These findings could explain the cell type and species differences in PTEN-regulated apoptosis. The discrepancies could be attributable to the differences in PTEN signaling in VSMC and other cell types. Further studies are required in order to clarify the role of PTEN in ASM cell proliferation during airway remodeling.

In summary, our data demonstrate that PTEN overexpression inhibits the ASM proliferation and migration. These results contribute to a better understanding of the mechanisms by which PTEN suppresses bronchial inflammation and airway remodeling.

