Female patients with atrial fibrillation have increased oxidized and glycated lipoprotein properties and lower apolipoprotein A-I expression in HDL

SEONG-MIN KIM1*, JI-HYE LEE1*, JAE-RYONG KIM2, DONG-GU SHIN3,4, SANG-HEE LEE3 and KYUNG-HYUN CHO1,4

1School of Biotechnology, Aging-Associated Vascular Disease Research Center, Yeungnam University, Gyeongsan 712-749; 2Department of Biochemistry and Molecular Biology, Aging-Associated Vascular Disease Research Center, Yeungnam University; 3Cardiovascular Division, Internal Medicine, Aging-Associated Vascular Disease Research Center, Yeungnam University Medical Center, Daegu 705-717; 4Research Institute of Protein Sensor, Yeungnam University, Gyeongsan 712-749, Republic of Korea

Received October 15, 2010; Accepted November 24, 2010

DOI: 10.3892/ijmm.2011.646

Abstract. It is well-known that oxidative stress and inflammatory processes are linked to the incidence of atrial fibrillation (AF). In order to provide prognostic biomarkers for AF based on lipoprotein levels, we compared the lipid and protein parameters of oxidation and inflammation in individual lipoproteins from middle-aged females with AF. We analyzed plasma and lipoproteins (VLDL, LDL, HDL2, HDL3) from 11 female patients (mean age, 56±15 years) with paroxysmal lone AF and from a reference group of 10 female patients of similar age (mean age, 54±15 years). The AF group had normal levels of serum lipids and an inflammatory profile, except for a 7.5- and 6-fold elevation in hsCRP and tropinin I levels, respectively. No significant differences existed in serum lipids, glucose, uric acid, creatinine and blood urea nitrogen levels between the AF and control groups. The lipoprotein particles from the AF group were more oxidized and glycated with higher triacylglycerol content compared to the control group and the particle size was smaller. The lipoprotein particles from the AF group promoted more foam cell formation via accelerated phagocytosis by macrophages compared to the control group. HDL2 and HDL3 from the AF group showed decreased antioxidant ability and an approximately 30% lower expression of apoA-I compared to the control group. All of these modified properties of lipoproteins, including oxidation and glycation, might be linked to the lower antioxidant ability and elevated inflammatory parameters in women with AF.

Introduction

Atrial fibrillation (AF) is the most common arrhythmia in adults. An increased prevalence of AF is anticipated with the increase in the aging population and survivability of patients with chronic heart disease (1). A growing body of evidence implicates oxidative stress in the pathogenesis and perpetuation of AF (2-4). These findings were primarily derived from studies of animal and human samples with persistent or permanent forms of AF. In addition, it is still unclear if the abnormalities observed in these studies are the basis for the arrhythmia or are a consequence of the arrhythmia itself, particularly with respect to paroxysmal lone AF.

Oxidative modification of lipoproteins is regarded as a key step in the formation of atherosclerosis (5). In addition, lipid peroxidation induces cell damage in cardiac myocytes and electrophysiologic alterations, including generation of after-depolarizations and modification of transmembrane ion currents (6-8). Thus, it has been postulated that decreased antioxidative function, which might be present in paroxysmal AF and a consequence of increased lipid peroxidation, would provide the AF predisposing substrate. Furthermore, rapid atrial pacing or atrial tachyarrhythmias contribute to the increased expression of oxidative stress markers and electrophysiologic changes in the atria (4,9). In this study, we evaluated the composition and function of lipoproteins with respect to oxidation and inflammation in patients with paroxysmal lone AF, remote in time from arrhythmias to exclude the remodeling effects of the arrhythmia itself.

Dyslipidemia is an important risk factor for cardiovascular disease (CVD) and low-density lipoprotein-cholesterol (LDL-C) is a strong biomarker predictive of the risk of CVD (10). Patients with diabetes and metabolic syndrome have a strong association with atherogenic dyslipidemia, which includes high triacylglycerides (TG) and elevated small dense LDL (11). However, the patients with AF in this study and other studies (12) have a lipid profile in the normal range based on NCEP ATP III guidelines (13), indicating that a
different pathological mechanism might be involved in the
development of AF. To overcome this discrepancy between
the serum lipid profile and the pathophysiology of AF, the
composition and function of lipoproteins should be investi-
gated. The antioxidant ability of serum is highly dependent
on the extent of LDL oxidation and the capability of HDL to
exert anti-inflammatory activity (14).

HDL exerts many beneficial effects for the maintenance
of a healthy physiological system, including antioxidant,
anti-inflammatory and anti-thrombotic effects (15,16). These
activities are exerted in accordance with the composition
of essential apolipoproteins and associated enzymes.

This study was designed to compare individual lipoprotein
properties between female patients with AF and gender- and
age-matched controls to provide distinct biomarkers in apo-
lipoprotein and lipoprotein metabolism. To identify unique
properties in lipoprotein levels regarding oxidation and
inflammation, we isolated lipoproteins from middle-aged
females with AF by sequential ultracentrifugation.

Materials and methods

Patients. This study was comprised of 11 female patients
(mean age, 56±15 years) with paroxysmal lone AF and a
reference group of 10 female patients of similar age (mean
age, 54±15 years). The reference patients had structurally
normal hearts and were undergoing radiofrequency ablation
for atrioventricular nodal reentrant tachycardia with no
history of AF. Paroxysmal AF was defined according to the
Executive Summary on Practice Guidelines as recurrent AF
that terminates spontaneously within 7 days (17). Patients
were excluded from the study group if they had AF during
the week before enrollment (confirmed by continuous moni-
toring) and if they had a medical history or clinical evidence
of systemic diseases, such as hypertension, hyperthyroidism,
and diabetes. The absence of structural heart disease or coro-
nary artery disease (CAD) was confirmed based on history,
physical examination, chest X-ray, routine blood chemistry,
exercise stress test, and transthoracic and transesophageal
echocardiography, if needed. All anti-arrhythmic medications
or statins for the treatment of dyslipidemia were not used
before the study. All patients provided written informed
consent. The study protocol was approved by the Institutional
Review Board at the Yeungnam University Medical Center in
Daegu, Republic of Korea.

Echocardiography. Two-dimension and Doppler echo-
cardiographies were performed by one experienced sonographer
using a GE Vivid 4 System (GPS Medical, Indianapolis, IN,
USA) at the time of sampling. Left ventricular end-diastolic
diameter and left atrial (LA) dimension were measured by
M-mode-derived anteroposterior linear dimension from the
parasternal long axis view as recommended by the American
Society of Echocardiography. The left ventricular ejection
fraction (LVEF) was calculated using a modified Simpson rule.

Plasma analysis. Blood was obtained following an overnight
fast from AF patients and controls. Blood was collected using
a vacutainer (BD Biosciences, Franklin Lakes, NJ, USA)
containing EDTA (final concentration, 1 mM). Plasma was
isolated by low-speed centrifugation and stored at -80°C until
analysis. Blood parameters, lipids, and glucose concentra-
tions were determined using an automatic blood analyzer
(Chemistry Analyzer AU4500; Olympus, Tokyo, Japan).

Isolation and characterization of lipoproteins. Very low-density
lipoproteins (VLDL, d<1.019 g/ml), LDL (1.019<d<1.063),
HDL₁ (1.063<d<1.125), and HDL₂ (1.125<d<1.225) were
isolated from individual patient and control sera via sequential
ultracentrifugation (18), with the density adjusted by the
addition of NaCl and NaBr in accordance with standard
protocols. Samples were centrifuged at 100,000 x g for 24 h at
10°C using a Himac CP-90α (Hitachi, Tokyo, Japan).

For each of the lipoproteins which were individually
purified, total cholesterol (TC) and triglycerides (TG) measure-
ments were obtained using commercially available kits (T-CHO
and Cleantech TS-S; Wako Pure Chemical, Osaka, Japan). The
protein concentrations of lipoproteins were determined via the
Lowry protein assay, as modified by Markwell et al (19) using
the Bradford assay reagent (Bio-Rad, Seoul, South Korea)
with bovine serum albumin (BSA) as a standard. To assess the
degree of oxidation of individual LDL, the concentration
of oxidized species in LDL (oxLDL) was determined by the
thioarbituric acid reactive substances (TBARS) method using
malondialdehyde (MDA) as a standard (20).

To compare the extent of glycation between the groups,
the content of advanced glycation end products (AGEs) in
the individual lipoproteins were determined from reading the
fluorometric intensities at 370 nm (excitation) and 440 nm
(emission), as described recently by our research group (21).

Copper-mediated LDL-oxidation. To compare the suscepti-
bility of copper-mediated LDL oxidation, 300 µg of LDL were
incubated with 5 µM CuSO₄ for up to 3 h. During the incuba-
tion, the quantity of formed conjugated dienes was monitored
by measuring the absorbance at 234 nm (Abs₂₃₄) at 37°C
(22) using a Beckman DU800 spectrophotometer (Beckman
Coulter, Fullerton, CA, USA) equipped with a MultiTemp III
thermocirculator (Amersham, Uppsala, Sweden).

In order to verify the spectroscopic data, the oxLDL
samples were subjected to electrophoresis on a 0.5% agarose
gel for an electromobility comparison (23). The post-oxidative
electrophoretic mobility of LDL was compared via electropho-
resis on a 0.5% agarose gel because there is some modification
of amino acids in apo-B by oxidation.

Ferric-reducing ability of plasma assay. The ferric-reducing
ability of plasma (FRAP) was determined using the method
described by Benzie and Strain (24) with a slight modifica-
tion, as described recently by our research group (25).

Briefly, the FRA reagents were freshly prepared by mixing
25 ml of 0.2 M acetate buffer (pH 3.6), 2.5 ml of 10 mM 2,4,6,
tripyridyl-s-triazine (TPTZ; Fluka Chemicals), and 2.5 ml
of 20 mM FeCl₃·6H₂O. The antioxidant activities of HDL₃
were then estimated by measuring the increase in absorbance
induced by the generated ferrous ions. The freshly prepared
FRA reagent (300 µl) was mixed with equally diluted HDL₃
(2 mg/ml, 10 µl), which was dialyzed extensively against
PBS, after which the FRA was determined by measuring
the absorbance at 593 nm every 20 sec over a 10-min period
Table I. Plasma profiles of AF patients and controls.

<table>
<thead>
<tr>
<th></th>
<th>AF (n=11)</th>
<th>Control (n=10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (years)</td>
<td>56.6±15.9</td>
<td>54±15.5</td>
</tr>
<tr>
<td>BMI (kg/m²)</td>
<td>24.3±3.6</td>
<td>23.4±3.4</td>
</tr>
<tr>
<td>SBP (mmHg)</td>
<td>117±18.9</td>
<td>116.4±11.1</td>
</tr>
<tr>
<td>DBP (mmHg)</td>
<td>74.9±14.5</td>
<td>72±8.3</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>63±6</td>
<td>64±4</td>
</tr>
<tr>
<td>LA size (mm)</td>
<td>34.3±7.3</td>
<td>31.1±4.5</td>
</tr>
<tr>
<td>TC (mg/dl)</td>
<td>200.8±33.1</td>
<td>188.7±30.7</td>
</tr>
<tr>
<td>TG (mg/dl)</td>
<td>113.9±81.2</td>
<td>168.5±77.3</td>
</tr>
<tr>
<td>HDL-C (mg/dl)</td>
<td>59±13.1</td>
<td>53±18.2</td>
</tr>
<tr>
<td>% HDL in TC</td>
<td>29±9</td>
<td>28±5</td>
</tr>
<tr>
<td>LDL-C</td>
<td>119.6±35.7</td>
<td>110.8±21.1</td>
</tr>
<tr>
<td>TC/HDL ratio</td>
<td>3.6±1</td>
<td>3.8±9.9</td>
</tr>
<tr>
<td>LDL/HDL ratio</td>
<td>2.2±0.8</td>
<td>2.2±0.7</td>
</tr>
<tr>
<td>GOT (U/l)</td>
<td>30.5±20.1</td>
<td>24±5</td>
</tr>
<tr>
<td>GPT (U/l)</td>
<td>20.1±9.7</td>
<td>16.2±9.9</td>
</tr>
<tr>
<td>TSH (U/l)</td>
<td>2.3±2</td>
<td>2.5±0.9</td>
</tr>
<tr>
<td>hsC-reactive protein (mg/l)</td>
<td>0.3±0.4^a</td>
<td>0.04±0.04</td>
</tr>
<tr>
<td>Glucose (mg/dl)</td>
<td>113.5±30.1</td>
<td>113.3±31.4</td>
</tr>
<tr>
<td>Uric acid (mg/dl)</td>
<td>4.9±2</td>
<td>3.4±1</td>
</tr>
<tr>
<td>Blood urea nitrogen (mg/dl)</td>
<td>14.7±6.9</td>
<td>14.6±3.1</td>
</tr>
<tr>
<td>Creatinine (mg/dl)</td>
<td>0.8±0.3</td>
<td>0.7±0.1</td>
</tr>
<tr>
<td>Troponin I (ng/ml)</td>
<td>0.3±0.6^a</td>
<td>0.05±0.04</td>
</tr>
<tr>
<td>CETP activity (% CE-transfer)</td>
<td>25±1</td>
<td>26±2</td>
</tr>
</tbody>
</table>

BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; LVEF, left ventricular ejection fraction; LA, left atrium; C, cholesterol; CETP, cholesteryl ester transfer protein; GOT, glutamic oxaloacetic transaminase; GPT, γ-glutamyl pyruvic transaminase; TSH, thyroid stimulating hormone; HDL, high-density lipoprotein, LDL, low-density lipoprotein. TC, total cholesterol; TG, triglyceride; VLDL, very-low-density lipoprotein; TC, total cholesterol; TG, triglyceride; VLDL, very-low-density lipoprotein. ^p<0.05 vs. control.

at 25°C using a DU800 spectrophotometer equipped with a MultiTemp III thermostirculator.

Cholesteryl ester transfer assay. A reconstituted HDL (rHDL)-containing apoA-I and cholesteryl oleate was synthesized in accordance with the method described by Cho et al (26) using trace amounts of [3H]-cholesteryl oleate (TRK886, 3.5 μCi/mg of apoA-I; GE Healthcare) as a CE-donor. Next, to facilitate separation from the CE-acceptor, the rHDL was immobilized using a CNBr-activated Sepharose 4B resin (Amersham Biosciences), according to the manufacturer’s instructions.

The CE-transfer reaction was allowed in 300 μl reaction mixtures that contained each of the serum samples (20 μl) as a cholesteryl ester transfer protein (CETP) source. rHDL-agarose (50 μl, 0.25 mg/ml), and human LDL (50 μl, 0.25 mg/ml) as a cholesteryl (CE)-donor and -acceptor, respectively. After incubation for 6 h at 37°C, the reaction was halted via brief centrifugation (10,000 x g) for 3 min at 4°C. The supernatant, which contained the CE-acceptor (150 μl), was then subjected to scintillation counting, and the percentage transfer of [3H]-CE from rHDL to LDL was calculated.

Paraoxonase assay. Paraoxonase-1 (PON-1) activity toward paraoxon was determined by evaluating the hydrolysis of paraoxon into p-nitrophenol and diethylphosphate, which was catalyzed by the enzyme (27). PON-1 activity was then determined by measuring the initial velocity of p-nitrophenol production at 37°C by measuring the absorbance at 405 nm (microplate reader, Bio-Rad model 680; Bio-Rad, Hercules, CA, USA).

Western blot analysis. The apolipoprotein/lipoprotein compositions were compared via sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) with identical protein loading quantities from individual HDL₃ (3 μg total protein per lane) and HDL₂ (5 μg total protein per lane), and the level of expression of apolipoprotein was analyzed via immunodetection. Goat anti-human apoA-I antibody (ab97613) was purchased from Abcam (Cambridge, UK) as a primary antibody. Anti-goat immunoglobulin G (GC2020; Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) was used as the secondary antibody. The relative band intensity (BI) was compared via band scanning with Gel Doc™ XR (Bio-Rad) using Quantity One software (version 4.5.2).

Transmission electron microscopy (TEM). TEM was performed with a Hitachi electron microscope (model H-7600; Ibaraki, Japan) operating at 80 kV, as in our previous report (28). VLDL, LDL, and HDL were negatively stained with 1% sodium phosphotungstate (PTA; pH 7.4) with a final apolipo-protein concentration of 0.3 mg/ml in TBS. Each lipoprotein, 5 μl of a 0.3 mg/ml suspension, was blotted onto a Formvar carbon-coated 300 mesh copper grid and air-dried. The shape and size of lipoproteins were determined by TEM photography at a magnification of x40,000.

Data analysis. All data are expressed as the mean ± SD from at least three independent experiments with duplicate samples. Data comparisons were assessed by the Student’s t-test using the SPSS program (version 14.0; SPSS, Inc., Chicago, IL, USA).

Results

Baseline characteristics. Although the AF group had a slightly higher BMI than the control group, there was no difference in the BMI and systemic blood pressure between the groups, and the BMIs and systemic blood pressures were in the normal range, as shown in Table I. No significant difference in the LVEF and LA dimension between the groups was detected, although the LA size was slightly larger in the AF group. The plasma levels of TC, TG, HDL-C, and LDL-C of the AF group were similar to the control group. There was no difference in the plasma CETP activity between the AF and control groups (Table I). Additionally, there were no differences in glucose, uric acid, creatinine, and blood urea nitrogen.
levels between the groups, indicating that carbohydrate metabolism and kidney function were normal. Although other inflammatory parameters (GOT and GPT) were at similar level between the groups, the AF group had a 7.5- and 6-fold
higher of hsCRP and troponin I, respectively, than the control group, suggesting the possibility that the AF group may have had myofibril damage with inflammation.

Lipoprotein properties. In patients with AF, VLDL and LDL were well-developed and enriched with cholesterol and TG, as shown in Table II. Especially with respect to LDL, the AF group had 25% more enriched TG content than the control. HDL$_2$ from patients with AF had a 4.3-fold increased TG content compared to controls. Based on the lipid/protein ratio, LDL and HDL$_2$ from the AF group had a 1.5- and 1.7-fold increased TG/TP ratio, respectively, compared to the control group. However, there was no significant difference in the TC and TG content in HDL$_3$ between the groups.

Af-LDL was more sensitive to oxidation. Monitoring of the conjugated diene level revealed that the AF group had a $t_{1/2}$ max of 27 min, while the control group had a $t_{1/2}$ max of 44 min, as shown in Fig. 1A, suggesting that the LDL in patients with AF was 1.6-fold more sensitive to oxidation. Agarose electrophoresis revealed that the LDL samples from all of the patients with AF migrated to the bottom with darker intensity, while some of the LDL from the controls remained in the native state (as indicated by the arrow in Fig. 1B). These results indicate that cupric ion-mediated LDL oxidation was more sensitive in the AF group. However, there was no difference in the oxidation sensitivity of HDL$_2$ and HDL$_3$ between the groups (Fig. 1). UV quantification (234 nm) revealed that all lipoprotein fractions from the AF group contained more conjugated diene species, except HDL$_2$, based on an equal amount of protein, as shown in Fig. 1C. Quantification of the oxidized species by TBARS using an MDA standard showed that AF-VLDL and AF-LDL contained a much higher content of MDA; AF-VLDL and AF-LDL were 2- and 3.3-fold higher than the control group, respectively (Fig. 1D).

Antioxidant potential. Plasma FRA ability and PON activity were decreased by 12% and 24% decreased, respectively, in the AF group compared to controls, as shown in Fig. 2A. Based on the same protein concentrations in the HDL$_2$ and HDL$_3$ fractions, the AF group had weaker ferric ion removal ability than the control group during 20 min of incubation.

Figure 2. Comparison of antioxidant ability between the AF and control groups. (A) Plasma paraoxonase (PON) activity and ferric ion removal ability of plasma (FRAP). Twenty microliters of equally diluted plasma (10 mg/ml) was used as an enzyme source for 30 min of incubation. The error bars indicate the SD from three independent experiments with duplicate samples. (B) Ferric ion removal ability of HDL. Rate of increase in absorbance at 593 nm. The HDL$_3$ of the AF group had a much weaker reducing ability than the HDL$_3$ of the control group after 20 min of incubation.

Figure 3. Quantification of advanced glycosylation products. The extent of glycation was determined by fluorescence (Ex=370 nm, Em=440 nm) measurement in each lipoprotein fraction using the same amount of protein (VLDL, 15 µg; LDL, 32 µg; HDL$_2$, 30 µg; and HDL$_3$, 50 µg).
intensity (BI, indicated as the lower number) was approximately 1.6-1.7 for both groups, as shown in Fig. 4B.

Particle size of lipoproteins. Electron microscopy revealed that the AF group had a significantly smaller particle size of lipoproteins, as shown in Fig. 5. The LDL fraction from the patients with AF were 20 and 23 nm for width and length (W x L), while the LDL fraction from controls were 24 and 25 nm for W x L (data not shown). The HDL₂ (0.3 mg/ml) and HDL₃ fractions (0.5 mg/ml) from the AF group were 26-33% smaller than the controls in W x L. The size of the HDL₂ fraction from the females with AF and controls using
computer-assisted morphometry was 205±105 nm² and 283±96 nm², respectively; the size of the HDL₂ fraction from patients with AF and controls was 60±13 and 86±21 nm², respectively. Thus, the size of the HDL₂ and HDL₃ fractions were reduced 28% and 31%, respectively, which is in good agreement with the measurement of W x L.

Acceleration of lipoprotein phagocytosis into macrophages. After a 48-h incubation, addition of VLDL (7.5 µg of protein) or LDL from patients with AF (16.5 µg of protein) into the cell medium resulted in a much stronger red intensity than the same amount of VLDL and LDL from controls, while PBS-treated cells did not exhibit red intensity, as shown in Fig. 6. This result indicates that VLDL and LDL from the AF group could be more easily taken up into macrophages by phagocytosis. Determination of the oxidized species within the culture media treated with the VLDL and LDL from patients with AF contained 4.7 nM and 3.8 nM of MDA, respectively, while media treated with VLDL and LDL from controls contained 2.3 and 2.5 nM of MDA, respectively, as shown in Fig. 6. These results suggest that LDL from patients with AF, which was more oxidized and glycated, accelerated the production of foam cells.

Discussion

Oxidative stress and inflammation have been linked to the pathogenesis and perpetuation of AF (2-4). Gene expression profiling on heart tissues from patients with AF suggest that oxidative stress-related genes are up-regulated. However, these findings are derived mostly from studies of chronic AF patients. The role of oxidative stress in paroxysmal lone AF is still unclear, and there have been no reports to compare the extent of oxidation and inflammation at the lipoprotein level. To identify this factor, we studied patients with paroxysmal lone AF who were remote from an episode of AF, thereby removing the effects of acute rate-related remodeling.

In the present study, we found that patients with paroxysmal lone AF had more oxidized (Fig. 1) and glycated (Fig. 3) lipoproteins with decreased plasma antioxidant ability (Fig. 2) and less apoA-I in HDL₃ (Fig. 4). In addition, the AF group had smaller lipoprotein particle size (Fig. 5) and increased TG content (Table I) with accelerated foam cell formation (Fig. 6). Thus, we posit that these changes in lipoprotein profile and decreased antioxidant ability which occur in lone paroxysmal AF remotely from arrhythmia represent one of the essential contributors to the development of the initial substrate and progression of AF. The progression and perpetuation of AF may cause a vicious cycle which further makes the atrial substrate worse and susceptible to AF.

The occult abnormalities described in previous studies of paroxysmal lone AF were abnormal atrial histology, including patchy fibrosis (29), inflammation (30), and microvascular dysfunction in the coronary circulation (31). Stiles et al (32) stated that all of these features contributed to their observations of an abnormal substrate, the so-called 'second factor' in lone AF. We assume that these abnormalities, which we noted in the present study, may precede the occurrence of an abnormal substrate as a second factor as Stiles et al have reported (32).

Unlike in other cardiovascular diseases, AF patients did not show notable dyslipidemia in the current or in another study (12). Patients with paroxysmal lone AF have similar blood pressures serum cholesterol, HDL-C, LDL-C, TG, and fasting glucose levels; however, inflammatory parameters are increased in AF patients (33). Similarly, Zhang et al (34) reported that vascular cell adhesion molecule (VCAM)-1, hsCRP, and urotransin-II levels were significantly elevated in patients with paroxysmal lone AF. A Framingham offspring cohort study revealed that CRP and fibrinogen are elevated in the AF group (35). The cumulative evidence suggests that oxidative stress in myofibrils is directly associated with the incidence of AF (36). In this report, we showed that the AF...
group exhibited more oxidized VLDL and LDL with acceleration of foam cell production than the control group.

The oxidative modification of LDL, which is considered to be a strong risk factor for atherosclerosis and ACS, occurs through the release of pro-inflammatory and oxidative signals. The AF group also showed less PON activity and antioxidant potential in the HDL fraction (Fig. 2). Reduced PON activity is associated with a higher prevalence of CAD and arrhythmias in patients with myocardial infarction and ST-elevation (37). In general, the PON1 enzyme is physically associated with the HDL₃ fraction and most of the PON activity exists in the HDL₃ fraction, as well as other antioxidant enzymes (38). PON1 attenuates the oxidation of LDL via inhibition of the accumulation of lipid peroxides in LDL (39). The LDLs from the AF group were more easily oxidized by cupric ion treatment and had a higher content of oxidative stress (Fig. 1 and 2). Although more evidence is required to make concrete conclusions, the current results suggest that more highly oxidized lipoproteins might be a reason for AF rather than a result of AF.

Because there have been no reports to compare the extent of oxidation and inflammation in the lipoprotein level, we characterized the lipoprotein properties in female patients with AF in the current study. AF patients had more oxidized and glycated VLDL and LDL and an increased level of TG content (Table II) in LDL and HDL₃, although the blood level of TG was in the normal range (Table I). It has been well-established that the serum TG level is an independent risk factor for CAD (40) and metabolic syndrome (41). The current study and other studies have suggested that TG-rich lipoproteins are pro-atherogenic and more specific to myocardial infarction (25), as well as to metabolic syndrome (42). The presence of increased TG in lipoproteins is in good agreement with the results of previous studies that indicated that TG levels are an important and independent predictor of CAD and stroke risk in the Asia-Pacific region (43). Furthermore, VLDL and LDL from the AF group, which were more oxidized and glycated, and had a smaller particle size, exhibited increased facilitated phagocytosis into macrophages with increased production of oxidized species (Fig. 6). These results are in good agreement with previous reports that TG-rich lipoproteins are pro-atherogenic (44) and TG-enriched VLDL are toxic to endothelial cells (45).

The apolipoproteins, apo-A-I and apo-B, are the primary protein constituents of HDL and LDL, respectively. In the healthy state, HDL exerts many beneficial effects for the maintenance of a healthy physiological system, including antioxidant, anti-inflammatory, and anti-thrombotic effects (15). The AF patients in this study showed significantly lowered apo-A-I levels in the HDL₃ fraction (Fig. 4), indicating a reduced antioxidant potential. LDL is the major cholesterol carrier in the plasma with a heterogeneous particle size and composition. Small dense LDL, which is easily oxidized and glycated via interaction with reactive oxygen species and carbohydrate in the blood, are increased with progression of aging, diabetes mellitus, and CAD (46). The patients with AF in this study had smaller LDL and HDL particle sizes (Fig. 5), and AF-LDL was more easily taken up by macrophages (Fig. 6). Furthermore, the VLDL and LDL from patients with AF were more highly glycated (Fig. 3). These modifications of LDL particle size and extent of glycation are in good agreement with a previous report that small dense LDL is more preferentially glycated (47). In addition, more highly glycated LDL increases CC chemokine receptor-2 expression in macrophages and monocyte chemoattractant protein-1 mediated chemotaxis (48). Moreover, our research group recently reported an elevated level of LDL glycation in an elderly group (mean age, 71±4 years), which had a higher inflammatory profile with a loss of antioxidant ability (49).

In conclusion, we have shown that the lipoprotein properties of AF patients are more oxidized and modified with a smaller particle size compared to controls. VLDL and LDL promoted more foam cell formation via accelerated phagocytosis of macrophages. HDL₃ from the AF group had a lower apo-A-I content and smaller particle size with decreased antioxidant ability. All of these modified properties, including oxidation and glycation of lipoproteins, might be connected to lowered antioxidant ability and elevated inflammatory parameters in the blood of patients with AF.

Acknowledgements

This work was supported by the National Research Foundation (NRF) through the Aging-associated Vascular Disease Research Center at Yeungnam University [R13-2005-005-01003-0 (2010)] and Undergraduate Research Program (2010-2-101) of Korea Foundation for the Advancement of Science and Creativity.

References

