Abstract. Osteocalcin (OC) is encoded by the bone γ-carboxyglutamate (Gla) protein (BGLAP) gene, and it is released by osteoblasts during osteogenesis. Its expression can be modulated by growth factors, hormones, cytokines and physical stimuli via signal transduction pathways, binding to the BGLAP gene promoter or interactions with nuclear transcription factors. It was recently demonstrated that uncarboxylated OC improves glucose tolerance and insulin sensitivity in mice by increasing the expression and secretion of insulin in β-cells and of adiponectin in adipocytes. Humans with type 2 diabetes have significantly lower serum levels of OC than healthy individuals and indeed, serum OC levels have been inversely correlated with fasting plasma glucose, fasting insulin and the homeostasis model assessment of insulin resistance (HOMA-IR) index. Moreover, several drugs have been shown to influence OC expression and its serum concentration. This review summarizes the molecular mechanisms involved in the modulation of OC expression, and discusses the potential relevance of OC in the pathogenesis and treatment of diabetes.

Contents
1. Introduction
2. BGLAP gene organization
3. OC expression
4. Modulation of OC expression
5. Biological activities of OC
6. Evidence for the association of OC with markers of glycemic status in humans
7. Discussion

1. Introduction

Osteocalcin (OC) is the product of the bone γ-carboxyglutamate (Gla) protein (BGLAP) gene, which is primarily expressed in osteoblasts and is regulated in response to physiological or pathological processes (1). Growth factors, hormones, cytokines, load and vibration have all been shown to modulate BGLAP gene expression through signal transduction pathways or through the interaction of nuclear transcription factors with the BGLAP gene promoter (1-5). OC exists in two main forms, the carboxylated (cOC) and uncarboxylated (ucOC) forms. While cOC, that is considered a chemoattractant and an activator of cells with bone resorption properties (6,7), has a high affinity for hydroxyapatite and mineral ions; ucOC improves glucose tolerance and insulin sensitivity in mice, protecting them against the development of diabetes (8). In humans, OC serum levels have been inversely correlated with glycated hemoglobin (HbA₁c), fasting plasma glucose (FPG), fasting insulin and the homeostasis-model assessment insulin resistance (HOMA-IR) index; also, they are diminished in type 2 diabetes (9-11). Several drugs used in both clinical and non-clinical settings influence the serum levels of OC (12-15) and hence, might be of potential utility for the treatment of type 2 diabetes.

Here, we present an overview of the organization of the BGLAP gene and of the expression of OC; in addition, we describe how OC expression is modulated by various compounds. A synopsis of the biological activities of OC and its activity in humans is presented and finally, we discuss its potential relevance in diabetes pathogenesis and treatment.

2. BGLAP gene organization

The human BGLAP gene is a DNA sequence of ~1700 bp that is located at chromosome 1q25-q31 (GenBank Acc. no. X04143.1), and which shares a high degree of homology.
with mammalian counterparts from the mouse, rat, monkey and pig (1,16). The upstream sequences associated with the BGLAP gene are approximately 700 bp long from the 5'-end to the start site and they exhibit the same basic organizational features of most eukaryotic genes. These include: i) widely conserved DNA sequences; ii) DNA sequences responsive to hormones, cytokines and growth factors; iii) DNA sequences that bind to tissue-specific transcription factors; and iv) enhancer and silencer DNA sequences (5,17-23). Downstream from the start site, the gene contains four exons and three introns that are approximately 1,000 bp long (Fig. 1).

3. OC expression

The BGLAP gene encoding for OC is expressed efficiently in osteoblasts and odonotoblasts, and more weakly in the ovaries, prostate, testes, skeletal muscle, thyroid and other tissues (24). In this section, we will review the expression of the BGLAP gene, including its transcription, post-transcriptional processing, as well as the synthesis and release of OC.

BGLAP gene transcription and post-transcriptional processing.

Transcription of the BGLAP gene is regulated temporarily, depending on the stage of osteogenesis and on the development of osteoblast precursors (25). While the BGLAP gene is switched off (inactive) during osteoblast proliferation, it is activated during differentiation (25). During this stage, transcriptional activation involves the basal transcription of the BGLAP gene as well as vitamin D (VD)-induced BGLAP gene transcription, in which the rate of BGLAP gene transcription increases 10- to 20-fold (25,26) (Fig. 2). Indeed, there is evidence that a sequence of events culminates in BGLAP gene transcription, including structural gene activation, and the binding of the appropriate transcription factors and DNA polymerase to the gene promoter.

Histone acetylation at the OC locus has been observed during bone-specific OC expression (27) and the interaction of histone deacetylase 3 with RUNX2 is thought to repress the OC promoter (28). Thus, structural activation of the BGLAP gene appears to involve histone acetylation by histone acetyltransferases and simultaneous inactivation of histone deacetylases (27,28). Once gene activation occurs, initiation of basal BGLAP gene transcription requires the binding of the specific elements to its cognate DNA sequences, including: i) basal transcription factors TFIID, TFIIA, TFIIB, TFIIH, TFIIIE and TFIIH; ii) the osteoblast specific transcription factor RUNX2; iii) the OC box binding protein; and iv) RNA polymerase II (25,29-32).

Basal BGLAP gene transcription can be enhanced by activators and co-activators. The most important activator is the VD-vitamin D receptor-retinoid X receptor complex (VD-VD RXR), which increases the rate of BGLAP transcription by binding to an enhancer sequence located at the distal gene promoter (26,30,33). The binding of VD to VDR induces conformational changes in the receptor, facilitating its interaction with co-activators, such as NCoA-1/SRC-1, NCoA-2/GRIP/TIF2, CBP, p300 and DRIP (31). BGLAP gene transcription is repressed by transcription factors such as DLX3, MSX2, DLX5 and MEF, and by the glucocorticoid-glucocorticoid receptor complex. This repression is achieved through interaction with RUNX2 (17,34), binding to OC box (22) and by modulating the expression of other BGLAP regulators (35,36), as well as by competition or interference with the binding of other transcription factors to the BGLAP gene promoter (37,38). In addition, nuclear matrix proteins (NMP) participate in BGLAP gene transcription. Accordingly, NMP-1 and NPM-2 interact transiently with two binding elements for NMP located at the BGLAP gene promoter; hence NMP could be important in concentrating and/or localizing transcription factors that mediate both basal and VD-induced BGLAP gene transcription (39,40).

Six OC splice variants exist, such variants retain distinct combination of introns, although a dominant transcript containing all 3 introns has been detected by RT-PCR. These 6 variants encode proteins of 57 to 100 amino acids (aa) that are identical to pre-pro-OC in the N-terminal domain. However, only in bone-related tissue are all 3 OC introns efficiently spliced out (24).

OC synthesis and release. Human OC synthesis occurs after the BGLAP gene is transcribed and processed to OC mRNA, that is then translated in the rough endoplasmic reticulum (RER) to pre-pro-OC, a protein precursor of 98 aa residues (1,16,41,42). Subsequently, pre-pro-OC undergoes proteolysis...
to form a pre-peptide (23 aa) and pro-OC (75 aa) (1,16,41,42). The pro-peptide then directs pro-OC to the RER membrane where γ-glutamyl carboxylase (GGCX) carboxylates glutamic acid residues at the 17, 21 and 24 positions, resulting in the formation of Gla-residues in a vitamin-K-dependent process (43,44). However, this process only occurs in a proportion of newly synthesized pro-OC (1,43). Pro-OC is ultimately subjected to a final proteolytic process that produces a pro-peptide (26 aa) and cOC or ucOC. Both forms are released from osteoblasts in a process which is calcium-dependent and relies on the activity of calcium and potassium channels (Fig. 3) (45,46).
Table I. Modulators of *BGLAP* gene expression and the level of their modulation.

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Effect</th>
<th>Level of modulation</th>
<th>Experimental model</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Growth factors</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGF-1</td>
<td>† OC production; † OC mRNA, stabilizes OC mRNA; † VD-induced OC secretion and reversal of the inhibitory effect of dexamethasone</td>
<td>Transcriptional, post-transcriptional</td>
<td>IGF-1 addition to mouse long bone culture and to the human osteosarcoma cell line MG-63</td>
<td>64,66</td>
</tr>
<tr>
<td>TGF-β</td>
<td>↓ OC production</td>
<td>Transcriptional</td>
<td>TGF-β addition to mouse long bone culture; rat osteosarcoma cell line ROS 17/2.8; human osteosarcoma cell line MG-63</td>
<td>4,18,66</td>
</tr>
<tr>
<td>bFGF</td>
<td>† OC mRNA (independent of both VD and retinoic acid activation of the OC promoter)</td>
<td>Transcriptional</td>
<td>bFGF transfection of rat osteosarcoma cell line ROS 17/2.8; bFGF injection to ovariectomized rats in vivo</td>
<td>23,67</td>
</tr>
<tr>
<td>BMP-2</td>
<td>† OC mRNA</td>
<td>Transcriptional</td>
<td>BMP-2 transfection of human periosteal cells; addition of rBMP-2 to fetal rat calvarial osteoblasts KS483 and to rat primary osteoblastic cells; subcutaneous injection of BMP-2 to mice</td>
<td>68-70</td>
</tr>
<tr>
<td>BMP-7</td>
<td>† OC mRNA; inhibits osteoblast proliferation and induces differentiation</td>
<td>Transcriptional</td>
<td>BMP-7 addition to the rat osteosarcoma cell line ROS 17/2.8</td>
<td>65</td>
</tr>
<tr>
<td>Hormones</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Parathyroid hormone</td>
<td>† OC mRNA through an increase in cAMP and PKA which then activates ATF4, with a weaker requirement for the protein kinase C and the MAPK/ERK pathways</td>
<td>Transcriptional</td>
<td>PTH subcutaneous injection to C57BL/6J mice; SaOS-2 osteosarcoma cell line transfected with the OC promoter with addition of PTH to the culture; MC-4 cells or osteoblasts transfected with the OC promoter + PTH addition to the culture</td>
<td>74,75</td>
</tr>
<tr>
<td>Calcitonin</td>
<td>† OC mRNA in vitro while it has no effect in vivo</td>
<td>Unknown</td>
<td>Addition of calcitonin to mouse osteoblastic MC3T3-E1 cells; calcitonin administration to rats</td>
<td>76,78</td>
</tr>
<tr>
<td>Leptin</td>
<td>↓ OC expression</td>
<td>Unknown</td>
<td>Leptin and leptin receptor deficient mice have increased bone formation and OC expression</td>
<td>79,80</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>† BGLAP gene transcription in vitro and in vivo, thereby increasing OC mRNA, OC synthesis and release (has an opposite effect in the mouse)</td>
<td>Transcriptional</td>
<td>VD addition to cultures (fetal rat calvarial osteoblasts, ROS 17/2.8) and supplementation to animals</td>
<td>3,33,101</td>
</tr>
<tr>
<td>Glucocorticoids</td>
<td>Repression of BGLAP gene expression by direct binding to the OC promoter, thereby decreasing OC mRNA in vivo and in vitro</td>
<td>Transcriptional</td>
<td>Addition of dexamethasone to rat osteosarcoma cells ROS 17/2.8; dexamethasone administration to rats</td>
<td>38,88,95,101</td>
</tr>
<tr>
<td>Estrogens</td>
<td>Repression of BGLAP gene expression</td>
<td>Transcriptional</td>
<td>Administration of estradiol dipropionate to ovariectomized rats and measurement of OC mRNA at the femur</td>
<td>90,91</td>
</tr>
<tr>
<td>Progesterone</td>
<td>† OC mRNA</td>
<td>Transcriptional</td>
<td>Addition of progesterone to fetal rat calvarial osteoblasts</td>
<td>69,70,92</td>
</tr>
</tbody>
</table>
4. Modulation of OC expression

OC expression is regulated by growth factors, hormones, cytokines and physical stimuli, such as load and vibration (Fig. 4, Table I).

Physical stimuli modulate OC expression through Wnt/β-catenin and matrix-cell interactions. Mechanical loading and vibrations have been shown to influence BGLAP gene expression. Simulated mechanical loading significantly increases OC expression both in vivo and in vitro (47,48). Likewise, broad frequency vibration and dynamic stress (to simulate vibration) increase OC gene expression in cell culture (49,50). These changes in OC expression in response to mechanical loading are mediated, at least in part, by activation of signal transduction pathways such as the Wnt/β-catenin, MAPK and extracellular matrix-integrins-nuclear pathways (20,51,52).

In the canonical Wnt/β-catenin pathway, Wnt (ligand) binding to its receptor causes β-catenin stabilization and its accumulation in the cell cytosol. This β-catenin then translocates to the nucleus where it associates with the Tcf/LEF family of transcription factors, consequently regulating the expression of canonical Wnt target genes (53,54) like Runx2 (55). Subsequently, RUNX2 (the product of Runx2) interacts with three DNA sequences in the BGLAP gene promoter to maintain its basal transcription (26,30).

The bone extracellular matrix is composed of many proteins, including, OC, collagen, elastin, fibronectin, osteonectin, osteopontin and bone sialoprotein (56,57). Such proteins

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Effect</th>
<th>Level of modulation</th>
<th>Experimental model</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thyroid hormone</td>
<td>↑ OC mRNA and protein levels</td>
<td>Transcriptional</td>
<td>Addition of triiodothyronine (T3) to MC3T3-E1 cells; systemic TSH administration</td>
<td>93</td>
</tr>
<tr>
<td>Retinoic acid</td>
<td>Enhances the effect of VD on BGLAP</td>
<td>Transcriptional</td>
<td>Addition of retinoic acid to rat osteosarcoma cells ROS 17/2.8</td>
<td>89</td>
</tr>
<tr>
<td>Cytokines</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-1</td>
<td>↓ BGLAP gene expression</td>
<td>Transcriptional</td>
<td>Addition of IL-1 to human osteoblast-like cultures and rat osteoblasts</td>
<td>2</td>
</tr>
<tr>
<td>Physical stimuli</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Load</td>
<td>↑ BGLAP gene expression</td>
<td>Transcriptional</td>
<td>Osteoblast differentiation induced by mechanical forces; compressive forces to rat calvarial osteoblasts</td>
<td>47,48</td>
</tr>
<tr>
<td>Vibrations</td>
<td>↑ BGLAP gene expression</td>
<td>Unknown</td>
<td>Broad frequency vibration applied to MC3T3-E1 cells</td>
<td>50</td>
</tr>
<tr>
<td>Matrix-cell interactions</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collagen-α2β1 integrin</td>
<td>↑ BGLAP gene expression</td>
<td>Probably post-</td>
<td>Addition of anti-α2 integrin antibody to MC3T3-E1 cells blocks ascorbic acid-dependent induction of the BGLAP gene promoter</td>
<td>58,59,61</td>
</tr>
<tr>
<td>interaction</td>
<td></td>
<td>translational or</td>
<td>via an accessory factor</td>
<td></td>
</tr>
<tr>
<td>Osteopontin-αv integrins</td>
<td>↑ BGLAP gene expression</td>
<td>Unknown</td>
<td>Addition of anti-osteopontin monoclonal antibody inhibited OC expression in MC3T3-E1 cells; addition of the Arg-Gly-Asp peptidomimetic compound or rOPN increased BGLAP gene expression</td>
<td>60</td>
</tr>
<tr>
<td>Fibronectin-αβ2, αβ1 and αβ1 integrins</td>
<td>↑ BGLAP gene expression</td>
<td>Unknown</td>
<td>Addition of anti-integrin αβ2, αβ1 and αβ1 antibodies to fetal calvarial osteoblasts decreases OC mRNA</td>
<td>62</td>
</tr>
</tbody>
</table>

†, increase; †, decrease. IGF-1, insulin-like growth factor 1; OC, osteocalcin; TGF-β, transforming growth factor-β; bFGF, basic fibroblast growth factor; BMP-2, bone morphogenetic protein-2; BMP-7, bone morphogenetic protein 2; PTH, parathyroid hormone; VD, vitamin D.
interact with integrins at the cell membrane acting as signals that can modify gene expression, including that of BGLAP, through the activation of cytoskeletal and intracellular proteins (actin, talin, vinculin, paxillin and MAPK) (20,58-60). In fact, OC expression can be modified by exposing cells in culture to blocking antibodies, proteins or peptides directed against specific integrin subunits or matrix proteins (59-62).

Growth factors modulate OC expression through BMP/TGF-β signaling. Growth factors are essential for cell proliferation and organ growth, they are also capable of modulating OC expression (63). The transforming growth factor-β (TGF-β) keeps the BGLAP gene inactive during the proliferation stage of osteogenesis (18,20). In contrast, the bone morphogenetic protein-7 (BMP-7) and the insulin-like growth factor (IGF-1) induce differentiation and OC expression during the mineralization stage of osteogenesis (64-66). Other growth factors, including the basic fibroblast growth factor (bFGF; also called FGF2), and BMP-2 (67,68) can also modulate OC expression.

Growth factors mediate their effects on OC expression via the BMP/TGF-β signaling pathway. Briefly, the binding of BMP to its membrane receptor in osteoblasts triggers a signaling cascade that activates Smad 1, 5 and 8 by phosphorylation. These members of the family form a complex with Smad 4 (also called C-Smad), which is subsequently translocated to the nucleus where it interacts with other transcription factors such as RUNX2 to modulate the activity of target genes including BGLAP (69-72). Conversely, TGF-β binding to its membrane receptor results in activation of Smad 2 and Smad 3, which form a stable complex with Smad 4. This also translocates to the nucleus and interacts with transcription factors such as AP-1, VDR and p300/CBP, thereby positively or negatively modulating BGLAP gene transcription (20,31,73).

Peptide hormones modulate OC expression. Peptide hormones, including the parathyroid hormone (PTH), calcitonin and leptin, are involved in the modulation of BGLAP gene expression (74-78). PTH binds to its specific cell membrane receptor and activates several signal transduction pathways, including those mediated by protein kinase A (PKA), protein kinase C (PKC) and MAPK/ERK, resulting in increased BGLAP gene expression (see below). Calcitonin stimulates OC expression in a mouse osteoblastic cell line, whereas no such effect is observed in the appendicular and axial skeleton of the rat in vivo (76,78). Leptin modifies osteoblast function and down-regulates OC expression through a hypothalamic relay that is mediated by the sympathetic nervous system (79,80).

PKA/PKC signaling modulates OC expression. As indicated, PKA and PKC signaling is activated by PTH and binding of PTH to its G-protein-coupled receptor activates adenylyl cyclase and phospholipase C, thereby increasing the intracellular levels of cAMP and/or Ca²⁺. Increased levels of these second messengers activate PKA and PKC, which in turn modulate OC expression (74,81,82).

The MAPK-ERK signaling pathway is a common point of modulation in OC expression. The extracellular signal regulated kinase (ERK)-mitogen-activated protein kinase (MAPK) pathway represents an important link between the cell surface and the nucleus, and it influences proliferation and
differentiation (83,84). MAPK signaling up-regulates BGLAP gene expression through RUNX2 activation, increasing OC mRNA levels (85). This signaling pathway is activated by cell-matrix interactions, cytokines, osteogenic growth factors, such as BMPs and bFGF, mechanical loading and hormones such as PTH (51). In each case, the common event in this cascade is the activation of MAPK, which in turn phosphorylates transcription factors and other proteins, such as RUNX2, ultimately modulating gene expression and other cell functions (86).

Lipid hormones and thyroid hormones modulate OC expression by interacting with the BGLAP gene promoter and transcription factors. Lipid-derived hormones are also implicated in the modulation of BGLAP gene expression. These include VD, glucocorticoids, estrogens, progesterone, triiodothyronine and retinoic acid. Lipid-derived hormones enter the cell to form complexes with specific cytoplasmic or nuclear receptors. These complexes then bind to specific DNA sequences of the BGLAP gene promoter or they interact with transcription factors (repressors or activators), which in turn modulate the rate of transcription (3,33,37,69,87-97).

Drugs that up-regulate OC expression or serum levels. Several drugs are known to increase OC expression or serum levels. Glipizide and glybenclamide (blockers of ATP-dependent potassium channels) increase VD-induced OC secretion in cell cultures (45). This suggests that OC is released in osteoblasts by a mechanism similar to that which regulates insulin secretion in pancreatic β-cells (46). The bisphosphonates olpadronate (OPD) and IG-9402, increase OC release through the opening of voltage-dependent Ca2+ channels in the ROS 17/2.8 cell line, an effect abolished by Ca2+ channel blockers such as nifedipine and verapamil (15). The active form of VD, 1α-25(OH)2D3 (VD3), increases OC expression and release in osteoblasts. In fact, two VD metabolites, [25-OH-16,23E-diene-D3(R) and 1α,25-(OH2)-16,23E-diene-D3(A)], are 10 times more potent than VD3 in increasing OC mRNA expression and protein secretion (14). In addition TAK-788, which promotes osteoblast differentiation, increases OC release in rat bone marrow stromal cells (98). Genistein (a natural isoflavone phytoestrogen) significantly increases OC serum concentrations within 6-12 months of its administration to early postmenopausal women (99).

Drugs that down-regulate OC expression or serum levels. Other drugs demonstrably decrease OC expression or serum levels. The administration of glucocorticoids to humans decreases OC serum concentrations by decreasing OC expression and release (12,37,100,101). Hydrochlorothiazide, a thiazide diuretic, decreases the serum concentration of OC by inhibition of BGLAP gene transcription via the c-fos transcription factor (13). In addition, administration of low-doses of the antiepileptic drug levetiracetam to female rats over 90 days significantly reduces OC serum concentrations (102).

5. Biological activities of OC

Since its discovery in chicken bone (103), OC has attracted considerable attention, leading to the elucidation of a number of biological roles for this molecule.

Roles of cOC in bone. Human cOC is a protein of 49 aa with carboxyglutamic acid (Gla) residues at positions 17, 21 and 24 (43). It is produced during the mineralization stage of osteogenesis and it possesses high affinity for hydroxyapatite and mineral ions like calcium (103). However, loss and gain-of-function experiments have failed to identify a role for OC in extracellular matrix mineralization in vivo (104,105). cOC is considered to be an activator and a chemoattractant molecule in cells with bone resorption properties (6,7). Interestingly, OC-deficient mice exhibit increased bone formation (104), suggesting a central role for cOC in the regulation of bone remodeling.

Endocrine actions of ucOC. The first data on the endocrine action of OC were reported in 2007. In their study, Lee et al demonstrated, both in cell culture and in mice, that ucOC in the pancreas increased β-cell proliferation, insulin expression and release, resulting in improved glucose tolerance (8). In addition, ucOC increased adiponectin expression and secretion in adipose tissue, which in turn enhanced insulin sensitivity (8). Furthermore, OC (+/-) mice show an increase in fat mass, adipocyte number and serum triglyceride levels, whereas Esp (-/-) mice, which lack a protein responsible for down-regulation of OC expression and show high OC serum levels were protected against diet-induced obesity and diabetes (8). In 2008, the same group demonstrated that continuous infusion of recombinant OC (rOC) in wild-type mice i) improved glucose tolerance (at 0.03 and 0.3 ng/h) and insulin sensitivity (at 30 ng/h) and ii) increased insulin secretion (at 0.03 and 0.3 ng/h). In addition, continuous infusion of rOC to mice fed a high-fat diet protected from weight gain and glucose intolerance and maintained triglyceride serum levels within the normal range (106).

6. Evidence for the association of OC with markers of glycemic status in humans

Well before the findings of Lee et al (8), lower serum concentrations of total OC were described in children with type 1 diabetes (107). Several studies showed lower total OC serum concentrations in patients with type 2 diabetes when compared to healthy subjects (9,108-112). Actually, it was demonstrated that improved glycemic control in poorly controlled diabetic patients increased total OC serum concentrations and decreased HbA1c (108,113,114). Furthermore, the total OC levels were inversely correlated with HbA1c (115).

Up to this point, clinical studies had focused on the effects of diabetes on bone. However, the discovery of endocrine actions of ucOC in mice has focused research efforts on the possible role of OC in glycemic control in humans, prompting cross-sectional studies to identify the association of OC with type 2 diabetes and markers of the glycemic status. A recent study in Korean diabetic postmenopausal women found an inverse correlation between total OC and FPG, HbA1c, fasting insulin and insulin resistance. Moreover, participants with total OC in the highest quartile had significantly lower FPG and HbA1c (10). Furthermore, a study of Japanese men and postmenopausal women with type 2 diabetes also demonstrated an inverse correlation between total OC concentrations, FPG and HbA1c, and a positive correlation between...
total OC and total adiponectin, a hormone that enhances insulin sensitivity (11).

In healthy subjects, the association of OC with indicators of glycemic status and insulin resistance has also been studied. Among middle-aged males, elevated serum cOC and ucOC levels are associated with improved glucose tolerance and insulin sensitivity, as well as enhanced β-cell function (116). In healthy older men and women, elevated cOC concentrations are associated with lower insulin resistance (117). In men and women aged 65 and older (only 5% with diabetes), total OC concentrations were inversely correlated with FPG, fasting insulin, HOMA-IR, high-sensitivity C-reactive protein, IL-6, body mass index and body fat (118). In addition, participants with total OC concentrations within the highest tertile had lower FPG concentrations than those in the lowest tertile (118). Furthermore, higher total OC concentration at onset was associated with a significant attenuation in the observed increase in FPG after a 3-year follow-up (118).

7. Discussion

OC has become a subject of increased interest in recent years based on its role in glycemic control in mice and the clinical evidence supporting a similar role in humans. However, many questions must be answered before its complete role in human metabolic control is fully understood. In addition, it remains to be determined if drugs that increase OC expression, or its release or accumulation in serum, could modulate glycemic control. Conversely, it must be determined whether those drugs that inhibit OC activity should be avoided in patients with type 2 diabetes.

It is well known that glucocorticoids increase glucose serum levels by enhancing gluconeogenesis and that they should thus be avoided in healthy and diabetic subjects (119). However, their negative effects on OC expression and serum concentrations may provide further reason for caution. Thiazide diuretics, such as hydrochlorothiazide can impair glucose metabolism and exacerbate new-onset diabetes (120). Their administration to both diabetic and non-diabetic subjects has negative effects on pancreatic β-cell and glucose-induced insulin secretion, as well as on OC expression and serum levels (13,120). Thus it is possible that the impairment of glucose metabolism by thiazide diuretics may in part be due to impaired OC expression. Levetiracetam has not been associated with impaired glucose metabolism or diabetes; however, given that it significantly reduces OC serum concentrations in rats (102), its metabolic effect in humans should be determined. Glybenclamide and glipizide are effective in treating type 2 diabetes, and it is possible that their positive effects on glycemic control are in part due to an increase in OC serum concentrations, which could add therapeutic value to these drugs.

Given that bisphosphonates increase OC release in vitro (15), it may be interesting to test whether they have positive metabolic effects in postmenopausal type 2 diabetic women, in addition to their beneficial effects on bone mineral density. Conversely, it will be important to discount any deleterious effect of Ca2+ channel blockers on OC serum levels in vivo given their inhibition of OC release (15). Moreover, in light of the effects of VD and its metabolites, as well as TAK-788 and genistein, on OC expression and serum concentrations, it would be of interest to quantify their effects on glucose serum levels (14,98,99). Some drugs targeting insulin signaling pathways are currently under development to treat type 2 diabetes (121-124). Thus, it may be valuable to test whether compounds targeting signaling pathways modulating OC expression and release could have a positive effect on glycemic control or the management of type 2 diabetes.

To date, neither the OC receptor nor the OC signaling pathways have been identified. The elucidation of these central components of OC activity on beta cells and adipocytes is vital, not only to fully understand the biological roles of OC but also to define additional therapeutic approaches to treat type 2 diabetes.

Dipeptidyl peptidase-IV (DPP-IV) is an enzyme that regulates the half-life of the incretin, glucagon-like peptide-1 (GLP-1). Inhibitors of DPP-IV are used to treat type 2 diabetes (121,125). Given that OC, like GLP-1, increases β-cell proliferation and insulin synthesis and release, increasing the half-life of OC through the inhibition of modulatory proteases may potentially improve glycemic control in type 2 diabetes.

We previously found that patients with type 2 diabetes have a lower ucOC/cOC index than healthy subjects and that this value was negatively correlated with FPG and HOMA-IR levels. Subjects with an ucOC/cOC index within the highest quartile have lower FPG and HOMA-IR values than those in the lowest quartile (126). It remains to be determined whether any changes in γ-glutamyl carboxylase activity occurs in type 2 diabetes, or whether other factors might mediate the observed alterations in ucOC/cOC.

Lower OC levels have been widely reported in patients with type 2 diabetes (9,108-112). However, it remains to be determined if low ucOC concentrations in type 2 diabetes represent a cause and/or a consequence of hyperglycemia. A deleterious effect of hyperglycemia on the bone has been suggested (113,127,128), while a protective effect has been ascribed to high concentrations of OC in humans (118). As such, a causal effect of OC in type 2 diabetes cannot be discounted. In addition, it remains unclear which forms of OC, ucOC, cOC or both, participate in the glycemic control in humans.

In conclusion, there is ample evidence supporting the participation of OC in the glycemic control and energy metabolism. Positive modulation of OC serum concentrations could be valuable for the prevention, delay and treatment of diabetes, while, drugs that have deleterious effects on OC serum levels and release should be used with caution.

Acknowledgements

This report was supported by the Consejo Estatal de Ciencia y Tecnología de Jalisco (PS-2008-718).

References

