Open Access

Resveratrol, a polyphenol phytoalexin, protects cardiomyocytes against anoxia/reoxygenation injury via the TLR4/NF-κB signaling pathway

  • Authors:
    • Cui Zhang
    • Guosheng Lin
    • Weiguo Wan
    • Xuyon Li
    • Bin Zeng
    • Bo Yang
    • Congxin Huang
  • View Affiliations

  • Published online on: January 11, 2012     https://doi.org/10.3892/ijmm.2012.885
  • Pages: 557-563
  • Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY_NC 3.0].

Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

Previous studies indicate resveratrol pretreatment can protect cardiomyocytes. However, it is largely unknown whether resveratrol protects cardiomyocytes when applied at reperfusion. The purpose of this study was to investigate whether resveratrol given at reoxygenation could protect cardiomyocytes under the anoxia/reoxygenation (A/R) condition and to examine the underlying mechanism. In this study, primary cultures of neonatal rat cardiomyocytes were randomly distributed into three groups: control group, A/R group (cultured cardiomyocytes were subjected to 3 h anoxia followed by 2 h reoxygenation), and the resveratrol group (cardiomyocytes were subjected to 3 h anoxia/2 h reoxygenation, and 5, 10 or 20 µM resveratrol was applied 5 min after reoxygenation). In order to evaluate cardiomyocyte damage, cell viability, lactate dehydrogenase (LDH) release, caspase-3 activity, and apoptosis were analyzed by the cell counting kit (CCK)-8 assay, colorimetric method and flow cytometry, respectively. The mRNA and protein expression of Toll-like receptor 4 (TLR4) were detected by quantitative real-time PCR and western blot analysis. Nuclear factor-κB (NF-κB) p65 protein and I-κBα protein levels were also examined by western blot analysis. The levels of proinflammatory cytokines in the culture medium were assessed by enzyme-linked immunosorbent assay. We found that resveratrol prevented a reduction in cell viability, decreased the amount of LDH release, attenuated apoptotic cells and decreased caspase-3 activity induced by A/R in cardiomyocytes. Furthermore, resveratrol treatment significantly attenuated the TLR4 expression, inhibited NF-κB activation and reduced the levels of tumor necrosis factor (TNF)-α and interleukin (IL)-1β caused by A/R injury in the culture medium. Treatment with resveratrol shortly after the onset of reoxygenation improves cell survival and attenuates A/R-induced inflammatory response. This protection mechanism is possibly related to the TLR4/NF-κB signaling pathway.
View Figures
View References

Related Articles

Journal Cover

April 2012
Volume 29 Issue 4

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Zhang C, Lin G, Wan W, Li X, Zeng B, Yang B and Huang C: Resveratrol, a polyphenol phytoalexin, protects cardiomyocytes against anoxia/reoxygenation injury via the TLR4/NF-κB signaling pathway. Int J Mol Med 29: 557-563, 2012
APA
Zhang, C., Lin, G., Wan, W., Li, X., Zeng, B., Yang, B., & Huang, C. (2012). Resveratrol, a polyphenol phytoalexin, protects cardiomyocytes against anoxia/reoxygenation injury via the TLR4/NF-κB signaling pathway. International Journal of Molecular Medicine, 29, 557-563. https://doi.org/10.3892/ijmm.2012.885
MLA
Zhang, C., Lin, G., Wan, W., Li, X., Zeng, B., Yang, B., Huang, C."Resveratrol, a polyphenol phytoalexin, protects cardiomyocytes against anoxia/reoxygenation injury via the TLR4/NF-κB signaling pathway". International Journal of Molecular Medicine 29.4 (2012): 557-563.
Chicago
Zhang, C., Lin, G., Wan, W., Li, X., Zeng, B., Yang, B., Huang, C."Resveratrol, a polyphenol phytoalexin, protects cardiomyocytes against anoxia/reoxygenation injury via the TLR4/NF-κB signaling pathway". International Journal of Molecular Medicine 29, no. 4 (2012): 557-563. https://doi.org/10.3892/ijmm.2012.885