Lactoferrin protects against prion protein-induced cell death in neuronal cells by preventing mitochondrial dysfunction

YANG-GYU PARK1, JAE-KYO JEONG1, JU-HEE LEE1, YOU-JIN LEE1, JAE-WON SEOL1, SHANG-JIN KIM1, TAI-YOUNG HUR2, YOUNG-HUN JUNG2, SEOG-JIN KANG2 and SANG-YOUEL PARK1

1Korea Zoonoses Research Institute, Bio-Safety Research Institute, College of Veterinary Medicine, Chonbuk National University, Jeonju, Jeonbuk 561-756; 2National Institute of Animal Science, Rural Development Administration, Cheonan, Chungnam 330-801, Republic of Korea

Received August 3, 2012; Accepted September 18, 2012

DOI: 10.3892/ijmm.2012.1198

Abstract. Prion disorder-related neurodegenerative diseases are characterized by the accumulation of prion protein (PrP) scrapie isoform (PrPsc) within the central nervous system. PrPsc induces neuronal cell death by increasing intracellular generation of reactive oxygen species (ROS). Lactoferrin (LF) is an 80 kDa protein, which has antioxidant abilities due to the scavenging of ROS. The effects of LF treatment on PrP (106-126)-mediated neurotoxicity and ROS generation were the focus of this study. LF treatment protected against PrP (106-126)-induced neuronal cell death and decreased ROS generation. The reduced ROS generation prevented PrP (106-126)-induced mitochondrial dysfunction. Moreover, PrP (106-126)-induced protein activation including c-Jun N-terminal kinase and caspase-3 were blocked by LF treatment. These results demonstrated that LF protects neuronal cells against PrP (106-126)-mediated neurotoxicity through the scavenging of ROS and provide evidence that LF treatment prevents neuronal cell death caused by PrP (106-126).

Introduction

Prion diseases or transmissible spongiform encephalopathies (TSEs) are neurodegenerative disorders that are characterized by loss of motor control, dementia, central nervous system (CNS) spongiosis, and microglial activation (1,2).

TSEs are caused by an infectious agent, prion, whose major component is a pathological form of the prion protein termed the scrapie isoform (PrPSc) (3). PrPsc acts as a template for the conversion of normal form of the prion protein (the cellular isoform, PrPc) to PrPsc (4). In many cases this is also accompanied by the accumulation of the PrPSc that leads to neuronal apoptosis, extensive neuronal loss, and mitochondrial disruption (5). Many pathogenic characteristics of PrPSc have been confirmed in a peptide corresponding to residues 106-126 of PrP [PrP (106-126)] (6). Moreover, PrP (106-126) was reported to induce apoptotic cell death via dysregulation of mitochondrial homeostasis in neuronal cells (7). Thus, PrP (106-126) has been used as a model to study prion-induced neuronal cell death and has been postulated to induce mitochondrial dysfunction (8).

Mitochondria are essential organelles found in various cell types that play a principal role in cell survival and apoptotic cell death (9). Mitochondrial oxidative damage contributes to a range of degenerative diseases (10). Mitochondrial dysfunction caused by unnatural regulation of mitochondrial dynamic proteins may lead to neuropathological changes in prion disorders (11). In addition, PrP (106-126)-induced neuronal cell damage that occurs in neurodegenerative disorders causes mitochondrial disruption (12). Furthermore, oxidative stress is key in mitochondrial-mediated apoptotic cell death (13).

Oxidative stress is a baneful condition caused by reactive oxygen species (ROS) and/or a decrease in antioxidant levels (14). In neurodegenerative disorders, oxidative stress-induced neurodegeneration is mediated by ROS production (15). In addition, mitochondrial dysfunction is associated with ROS (16). PrP (106-126)-induced neuronal cell damage occurs in neurodegenerative disorders via regulation of cellular oxidation pathways (17).

Lactoferrin (LF) is an 80 kDa protein found in colostrum, milk, and mucosal secretions such as blood, saliva, and tears (18). It is a multifunctional protein of the transferrin family, which is involved in the regulation of immune responses, regulation of neutrophil apoptosis, antioxidation, iron binding ability, and antimicrobial activity (19). The antioxidation capability of LF is due to the scavenging of ROS (20). For example, LF inhibits the subsequent production of ROS by neutrophils (21). However, the molecular mechanism of LF-mediated neuronal survival is only beginning to be understood.

We hypothesized that LF can prevent PrP (106-126)-induced oxidative stress and neuronal cell death by regulating ROS generation. To test this hypothesis, we investigated the antioxidant effect of LF in PrP (106-126)-induced neuronal
cell death. In particular, we tested whether LF protects from neuronal cell death by PrP (106-126) and assessed the therapeutic value of LF in the treatment of neurodegenerative disorders.

Materials and methods

Cell culture. The SH-SY5Y human neuroblastoma cell line was obtained from the American Type Culture Collection (ATCC, Rockville, MD, USA). Cells were cultured in Minimum Essential Medium (MEM; Invitrogen-Gibco, Grand Island, NY, USA) that contained 10% fetal bovine serum (FBS; Invitrogen-Gibco) and penicillin-streptomycin (both 100 U/ml) in a humidified incubator maintained at 37°C and 5% CO₂.

Reagents. LF from bovine colostrums was purchased from Sigma-Aldrich (St. Louis, MO, USA). The antioxidant agents glutathione (GSH) and N-acetylcysteine (NAC) were purchased from Sigma-Aldrich.

PrP (106-126) treatment. Synthetic PrP (106-126) (sequence, Lys-Thr-Asn-Met-Lys-His-Met-Ala-Gly-Ala-Ala-Ala-Gly-Ala-Val-Gly-Gly-Leu-Gly) was synthesized by Peptron (Seoul, Korea). The peptide was dissolved in sterile dimethyl-sulfoxide (DMSO) at a concentration of 10 mM and stored at -80°C.

Western blot analysis. SH-SY5Y was lysed in a buffer containing 25 mM HEPES; pH 7.4, 100 mM NaCl, 1 mM EDTA, 5 mM MgCl₂, 0.1 mM dithiothreitol (DTT), and protease inhibitor mixture. Proteins were electrophoretically resolved by 10-15% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), and immunoblotting was performed as previously described. Equal amounts of lysate protein were similarly electrophoretically resolved and electrophoretically transferred to a nitrocellulose membrane. Immunoreactivity was detected through sequential incubation with horseradish peroxidase-conjugated secondary antibody and enhanced chemiluminescence reagents. The antibodies used for immunoblotting were phospho-c-Jun, N-terminal kinase (p-JNK; Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA), cleaved caspase-3 (Cell Signaling Technology, Danvers, MA, USA), and β-actin (Santa Cruz Biotechnology, Inc.).

Cellular fractionation. SH-SY5Y cells were resuspended in mitochondrial buffer (210 mM sucrose, 70 mM mannitol, 1 mM EDTA, 10 mM HEPES), broken by a 26-gauge needle, and centrifuged at 700 x g for 10 min. The postnuclear supernatant was centrifuged at 10,000 x g for 30 min. The pellet was used as the mitochondrial fraction and the supernatant was used as the cytosolic fraction. Total proteins were obtained and subjected to western blotting.

Annexin V assay. Apoptosis was assessed by a commercial Annexin V assay (Santa Cruz Biotechnology, Inc.) according to the manufacturer's protocol. Annexin V content was determined by measuring fluorescence at an excitation wavelength of 488 nm and emission wavelengths of 525 and 530 using a Guava easyCyte HT System (Millipore, Billerica, MA, USA). Immuno-fluorescence. SH-SY5Y cells cultured on glass coverslips were treated with PrP (106-126). Cells were washed with phosphate-buffered saline (PBS) and fixed with cold acetone for 90 sec. Cells were washed with PBS, blocked with 5% FBS in Tris buffer saline containing Tween-20, and incubated with anti-caspase-3 (2 µg/ml) and anti-p-JNK (2 µg/ml) monoclonal antibodies for 48 h at 20°C. Unbound antibody was removed by an additional PBS wash, and cells were incubated with labeled anti-rabbit Alexa Fluor 546 (for anti-caspase-3) IgG antibody (4 µg/ml) and Alexa Fluor 488 (for anti-p-JNK) IgG antibody (4 µg/ml) for 2 h at 20°C. Finally, cells were mounted with DakoCytomation fluorescent medium and visualized via fluorescence microscopy.

Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. TUNEL analysis was performed to measure the degree of cellular apoptosis using an *in situ* ApoBrdU DNA fragmentation assay kit (BioVision, San Francisco, CA, USA) following the manufacturer's instructions.

DCFH-DA assay. SH-SY5Y cells were incubated in minimum essential medium (HyClone Laboratories, Logan, UT, USA) containing 10 µM 2',7'-dichlorodihydrofluorescein diacetate (H2-DCFDA) at 37°C for 30 min. Cells were washed with PBS and lysed in the aforementioned lysis buffer. Cells were transferred to a clear 96-well plate and fluorescent emission from the bottom of the plate was measured at 515 nm with an excitation wavelength of 488 nm using a SpectraMax M2 instrument (Molecular Devices, Sunnyvale, CA, USA). SH-SY5Y cells were cultured on coverslips positioned in a 24-well plate. Cells were washed with PBS.

Mitochondrial transmembrane potential (MTP) assay. The change in MTP was evaluated by the cationic fluorescent indicator JC-1 (Molecular Probes, Eugene, OR, USA) following the manufacturer's instructions.

Statistical analysis. All data are expressed as the means ± standard deviation (SD), and the data were compared using the Student's *t*-test and the ANOVA Duncan test with the SAS statistical package (SAS, Cary, NC, USA). The results were considered to indicate statistically significant differences at *P<0.05* or **P<0.01.**
Results

PrP (106-126)-induced neuronal cell death is decreased by LF treatment in SH-SY5Y neuroblastoma cells. In a previous study, it was shown that LF inhibits prion accumulation (22). Thus, we presently examined whether LF protects against PrP (106-126)-mediated neurotoxicity. To study the influence of LF on PrP (106-126)-induced neuronal cell death, SH-SY5Y cells were pretreated with various concentrations of LF (12 h) and then exposed to 100 µM PrP (106-126) for 8 h (Fig. 1B). The preventative effect of LF was evaluated using the Annexin V assay of cell viability. As shown in Fig. 1A, LF treatment prevented PrP (106-126)-induced neuronal cell death. SH-SY5Y cells were responsive to PrP (106-126) treatment (46.94% increase in Annexin V-positive cells) and PrP (106-126)-induced neuronal cell death was decreased by LF pretreatment (Fig. 1A). TUNEL assay revealed the protective effect of LF on PrP (106-126)-induced apoptosis of SH-SY5Y cells (Fig. 1C). These results suggest that LF prevents PrP (106-126)-induced neuronal cell death.

LF treatment suppresses PrP (106-126)-mediated protein activation. We examined the effects of LF treatment on the JNK and caspase-3 activation. Western blot analyses revealed that activation of JNK and caspase-3 increased expression in the 100 µM PrP (106-126)-treated group compared to the LF (200 µg/ml)-pretreated group and the control group (Fig. 2A). PrP (106-126) treatment induced the activation of JNK and caspase-3 in SH-SY5Y cells. However, LF treatment inhibited the activation of JNK and caspase-3 (Fig. 2A and B). Consistent with these results, immunofluorescence monitoring also showed that LF treatment completely inhibited PrP (106-126)-mediated protein activation (Fig. 2C). These results suggest that LF treatment suppresses PrP (106-126)-induced protein activation.
LF treatment decreases PrP (106-126)-induced oxidative stress via ROS scavenging. In a previous study, it was shown that LF is a scavenger of ROS (20), and that this protects against ROS-mediated cell death. PrP (106-126)-induced neuronal cell death is mediated by ROS generation (23). Thus, we next assessed whether the protective effect of LF on PrP (106-126)-induced neuronal cell death was related to ROS generation. SH-SY5Y cells were preincubated 12 h with 200 µg/ml LF and then exposed to 100 µM PrP (106-126) for 12 h. LF treatment reduced PrP (106-126)-induced ROS generation (Fig. 1A). How LF treatment might induce PrP (106-126) resistance was studied by assessing the antioxidative properties and generation of ROS after treatment. Intracellular ROS production was spectrophotometrically measured by the DCFH-DA assay (Fig. 3A). After exposure to 100 µM PrP (106-126), DCF fluorescence intensity in SH-SY5Y cells increased significantly to 175% of the control value, whereas LF (200 µg/ml) or antioxidants (800 µM GSH or 4 mM NAC) led to a decrease in DCF fluorescence intensity (Fig. 3B). These results suggest that LF protects PrP (106-126)-induced neuronal cell death via the prevention of PrP (106-126)-induced ROS generation (Fig. 3C).

PrP (106-126)-induced mitochondrial dysfunction is suppressed by LF treatment. PrP (106-126)-induced apoptosis is mediated by mitochondrial disruption (12). Mitochondrial dysfunction occurs after apoptotic signals, including loss of MTP and release of apoptotic factors into the cytosol (24). We examined the effects of LF or antioxidants on PrP (106-126)-induced mitochondrial dysfunction. MTP was measured by flow cytometry. PrP (106-126)-treated cells showed increased JC-1 monomers, while LF pretreatment reduced PrP (106-126)-induced JC-1 monomers (Fig. 4A). Furthermore, pretreatment of antioxidants also reduced PrP (106-126)-induced JC-1 monomers. These results were confirmed by fluorescence microscopy images of JC-1 stained cells (Fig. 4B). Consistent with these results, LF treatment cells prevented PrP (106-126)-induced cytochrome c release and Bax translocation (Fig. 4C).
Discussion

Prion diseases are fatal neurodegenerative disorders (25). The main component of prion disease is the abnormal isoform of prion protein (PrPsc) (26). PrP (106-126) maintains the neurotoxic characteristics of the entire pathological PrPsc and is commonly used as a suitable model to study the mechanism of prion disorders (5). However, this peptide mechanism is not fully understood. In previous studies, it has been shown that PrP (106-126) induces neurotoxicity via mitochondrial disruption and ROS generation. LF is an 80 kDa protein. It is a multifunctional protein of the transferrin family and its functions include antimicrobial activity, antibacterial activity, cell proliferation, and antioxidant ability (27). LF protects from programmed cell death via antioxidant activity that is due to the scavenging of ROS (20). Moreover, LF inhibits PrPsc accumulation in scrapie-infected cells (22). However, the affirmative effect of LF on PrP (106-126)-induced neuronal cell death is not completely understood. In this study, LF treatment protected against PrP (106-126)-induced neuronal cell death (Fig. 1). In addition, PrPc-deficient mice were more sensitive to oxidative stress (28). Oxidative stress plays an important role in neurodegenerative disorders (13). Thus, we considered whether LF treatment could mediate ROS scavenger ability. Our results demonstrate that LF protects against PrP (106-126)-mediated JNK and caspase-3 activation, and support the view that LF-mediated ROS scavenging downregulates PrP (106-126)-mediated apoptotic cell death.
protein activation. NAC protects cells against mitochondrial dysfunction (30). Furthermore, PrP (106-126)-induced apoptotic cell death occurs through mitochondrial disruption in neuronal cells (12). Our findings additionally show that LF or antioxidants (GSH and NAC) prevent neuronal cell death due to PrP (106-126)-mediated mitochondrial dysfunction (Fig. 4). Collectively, these results indicate that LF treatment protects from PrP (106-126)-induced neuronal cell death by ROS scavenging associated antioxidant activity. Moreover, LF possesses antioxidant activity and prevents PrP (106-126)-mediated mitochondrial disruption. In addition, these findings also suggest that LF may have clinical benefits when used for neurodegenerative chemotherapy such as in patients with prion disorders.

Acknowledgements

This study was supported by the Cooperative Research Program for Agriculture Science and Technology Development (PJ907116) in Rural Development Administration and by the National Research Foundation of the Korea Grant funded by the Korean Government (2010-E00019).

References