Tougu Xiaotong capsule inhibits the tidemark replication and cartilage degradation of papain-induced osteoarthritis by the regulation of chondrocyte autophagy

XIHAII LI1, WENNA LANG2, HONGZHI YE1, FANGRONG YU3, HUITING LI3, JIAHSHOU CHEN3, LIANGLIANG CAI1, WENLIE CHEN1, RUHUI LIN3, YUNMEI HUANG3 and XIANXIANG LIU1

1Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou; 2Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou; 3Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350122, P.R. China

Received January 6, 2013; Accepted March 26, 2013

DOI: 10.3892/ijmm.2013.1341

Abstract. The tidemark is located between calcified and non-calcified cartilage matrices. Tidemark replication plays an important role in the pathogenesis of osteoarthritis (OA). Autophagy, or cellular self-digestion, is an essential cellular homeostasis mechanism that was found to be deficient in osteoarthritic cartilage. This study evaluated the effects of Tougu Xiaotong capsule (TXC) on the tidemark replication and cartilage degradation, and also investigated LC3 I/II, which executes autophagy, the potential role of ULK1, an inducer of autophagy, and Beclin1, a regulator of autophagy, in the development of a papain-induced OA in rat knee joints. Using a papain-injected knee rat model, standard histological methods were used to validate our model as well as treatment with TXC or glucosamine (GlcN). After 12 weeks of treatment, the changes of cartilage structure were observed by digital radiography (DR), optical microscopy, scanning electron microscopy and transmission electron microscopy, and the LC3 I/II, ULK1 and Beclin1 levels were measured by western blotting. Cartilage degradation was evaluated by the Mankin score on paraffin-embedded sections stained with Safranin O-fast green. TXC was found to improve the arrangement of subchondral bone collagen fibers and calcium phosphate crystals, inhibit the tidemark replication and delay the cartilage degradation in the papain-induced OA. Our results also showed that LC3 I/II, ULK1 and Beclin1 levels in both the TXC+OA and GlcN+OA groups were significantly increased compared to those in the OA group. The results indicate that TXC could inhibit the tidemark replication and cartilage degradation by the regulation of chondrocyte autophagy.

Introduction

Osteoarthritis (OA), a highly prevalent, slowly progressive, degenerative disease of diarthrodial joints, is characterized by a progressive degradation of articular cartilage associated with marginal osteophyte formation, progressive symptomatic loss of mechanical function and remodeling of the subchondral bone, belonging to the GU BI of Traditional Chinese Medicine (TCM) (1,2). As the precise molecular mechanism of OA has yet to be fully elucidated, a wide variety of animal models have been developed to study osteoarthritic progression, characterize the features of the early pathological changes of OA and to evaluate new drugs and/or original therapies (3). The papain-induced OA model has been widely studied in various animal species such as rats, thus providing new insights into pathogenic mechanisms and impact of hyaline cartilage (4,5). In this model, there is a sequence of events in which the degradation of the superficial zone develops into fibrillations of the cartilage and eventually leads to ulcerations, erosions and tidemark replication.

Tidemark, at which non-mineralized cartilage comes to contain hydroxyapatite, is a chondro-osseous junction between cartilage and bone in diarthrodial joints (6). The vicinity of the tidemark enhanced metabolic activity, consistent with mineralization, including the expression of alkaline phosphatase, the deposition of type X collagen and the ability to bind tetracycline \textit{in vivo}. The tidemark replication is considered a characteristic of the osteoarthrotic process with the advance of a calcification front advancing into the non-calcified cartilage of zone IV (7). The changes of tidemark are considered to be coordinated with the resorption of the calcified cartilage of zone V, as the subchondral bone thickens and replaces it (8).

The loss of chondrocyte function was found to be a persistent and important event in OA. A variety of stimuli, such as mechanical injury, loss of growth factors or excessive reactive oxygen species, can induce chondrocyte depletion (9).

Correspondence to: Dr Xianxiang Liu, Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, 1 Huatuo, University Town, Minhou Shangjie, Fuzhou, Fujian 350122, P.R. China

E-mail: liuxianxiang@163.com

Key words: osteoarthritis, tidemark, autophagy, subchondral bone, Tougu Xiaotong capsule
Since chondrocyte is solely responsible for the maintenance and production of extracellular matrix (ECM), chondrocyte depletion is indicated in the cartilage degradation, which pertains to OA pathogenesis (10,11). Chondrocyte apoptosis was thought to be a major cause of chondrocyte depletion during OA progression, so enhanced chondrocyte apoptosis is considered to be a sign of progressive cartilage degradation. However, the extent of the contribution of apoptotic cell death to chondrocyte depletion in OA progression remains to be resolved. Previous studies reported that another type of cell death, autophagy, may be involved in chondrocyte death during OA progression (12,13).

Tougu Xiaotong capsule (TXC), a TCM formulation, consists of a combination of four natural products including *Radix Morindae Officinalis*, *Radix Paeoniae Alba*, Rhizoma Chuanxiong and Glabrous Sarcandra Herb. These natural products together confer TXC properties of nourishing Shen, supplementing Jing, filling in Sui, stretching tendons and dredging collaterals to strengthen tendons and bones at the theories of TCM. TXC has been used for the osteoarthritic treatment in the Second People's Hospital Affiliated to Fujian University of TCM for two decades, and it has been shown to have significant therapeutic effects on OA in the clinical trials, such as evident improvements in osteoarthritic symptoms, pain, swelling and motion of joint. Previously, we reported that TXC could inhibit chondrocyte apoptosis by upregulation of Bcl-2, downregulation of p53, caspase-9 and caspase-3 (14). However, the molecular mechanism of the therapeutic effect of TXC remains largely unknown. Therefore, using a papain-induced OA in rat knee joints, we evaluated the effect of TXC on the tidemark replication and cartilage degradation, and investigated the underlying mechanisms of TXC in the regulation of chondrocyte autophagy.

Materials and methods

Animals. Forty 4-week-old male Sprague-Dawley (SD) rats of Specific Pathogen Free (SPF), qualified number SCXXK (Shanghai) 2007-0005, were purchased from the Shanghai Slack Laboratory Animal Co. (Shanghai, China). The Fujian University of TCM Experimental Animal Centre offers SPF medical laboratory animal environmental facilities, qualified number SYXXK(Min) 2009-0001. The care and use of the laboratory animals complied with the Guidance Suggestions for the Care and Use of Laboratory Animals 2006 of the Ministry of Science and Technology, China.

Experimental design. After one week of acclimation, the rats received a 12 µl intra-articular injection of a 1 U/ml of L-cysteine-activated papain in phosphate buffered saline (PBS) (Sigma, St. Louis, MO, USA) in their double knee joints at 1, 4 and 7 days (4). Eight weeks after papain-induced OA, the animals were randomly divided into four groups. The TXC+OA group received oral TXC (the Second People's Hospital Affiliated to Fujian University of TCM, medical license no. MINZHIZI Z20100006; 184 mg/kg/day). The TXC+OA group received oral TXC (the Second People's Hospital Affiliated to Fujian University of TCM, medical license no. MINZHIZI Z20100006; 184 mg/kg/day). The glucosamine (GlcN)+OA group received oral GlcN sulfate (Sigma; 150 mg/kg/day). The OA group and control group (non- OA) received equivalent saline only. All groups were treated once a day for 12 consecutive weeks, following which the animals were sacrificed. The changes of cartilage structure and tidemark were observed by digital radiography (DR), optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM).

Gross morphology of the knee joints. The gross morphological changes in cartilage were examined by DR (LDRD-01BL, Beijing Aerospace Zhongxing Medical System Co., Ltd., China), and the grade of knee joint degradation of DR films was according to the Kellgren-Lawrence X-ray grade standard (15). The tibial plateau cartilage was bivalved in the coronal plane with a sharp osteotome. The exposed surface was rinsed with PBS repeatedly to remove blood and bone marrow. Specimens, 5 mm x 5 mm x 5 mm in size for SEM, were then fixed with 2% gluteraldehyde solution, washed with 0.1 M sodium cacodylate buffer, and post-fixed with 1% osmium tetroxide. After dehydrating with an alcohol gradient series, and dehydrating with isooctyl acetate again, the specimen was dried using a critical point dryer with HCP-2. After coating with a layer of gold, all specimens were observed under SEM (JSM-6380LV, JEOL, Japan).

Histopathological examination of the knee joints. The joints were sectioned 0.5 cm above and below the joint line, fixed in 10% neutral buffered formalin for 3 days, and then decalcified for 2 weeks in buffered 12.5% ethylenediaminetetraacetic acid (EDTA) and formalin solution. The cartilage was stained with Safranin O-fast green stains to assess the general morphology and matrix proteoglycans. Cartilage histological changes were evaluated according to the Mankin score (16).

Ultrastructural examination of the knee articular cartilage. The tibial plateau cartilage, 2 mm x 2 mm x 2 mm in size for TEM, was fixed in 3% gluteraldehyde and 1.5% paraformaldehyde solution (pH 7.3) at 4°C for 24 h, postfixed with 1% osmic acid and 1.5% potassium hexacyanoferrate (II) solution (pH 7.3) at 4°C for 2 h. The samples were then washed, dehydrated with graded alcohol, and embedded in Epon-Araldite resin. Ultrathin sections were cut on a Leica ultramicrotome and stained with 2% aqueous uranyl acetate, counterstained with 0.3% lead citrate and examined with TEM (H7650, JEOL).

The subchondral bone was dried at 180°C for 24 h to grind and pass the powder through 200-mesh steel sieve, and examined with High Resolution TEM (JEM-2010, JEOL).

Western blot analysis. Protein (20 µg) of each sample was heated to 100°C for 5 min and then resolved on a 10% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) gel. The proteins were transferred to methanol-wetted polyvinylidene difluoride (PVDF) membranes in Tris/Glycine transfer buffer. Subsequently, the membranes were blocked for 1 h at room temperature in blocking buffer (5% skim milk powder, 0.5% Tween-20 in tris-buffered saline; TBS). Blots were incubated with LC3 1/2, ULK1, Beclin1 and β-actin (Abcam, Cambridge, UK) followed by an HRP-conjugated secondary antibody. Immunoreactive proteins were visualized by Western Blot Chemiluminescence Luminol Reagent (Santa Cruz Biototechnology, Santa Cruz, CA, USA). Immunoblot bands were quantitated with the Tocan 190 protein assay system (Bio-Rad, USA).
Statistical analysis. All data are represented as the means of averages ± standard deviation (SD) and analyzed by using the SPSS package for Windows (version 13.0). Statistical analysis of the data was performed with Student’s t-test and ANOVA. The enumeration data was analyzed by the Chi-square test. P<0.05 was considered to indicate statistically significant differences.

Results

No signs of drug toxicity were noted in the SD rats treated with TXC or GlcN. The level of daily activity was similar in all four experimental groups, and there were no significant differences in body weight between the groups during the study period.

TXC delays the degradation of papain-induced OA. In the knee joints, gross morphologic changes with a significant difference between the control group and the treatment with TXC or GlcN and OA groups are shown in Fig. 1. The width of the hind limb knee joint of the TXC or GlcN group was clearer and wider than that of the OA group. In the OA group, gross morphologic changes were characterized by cartilage degradation, such as fibrillation, erosion and ulcer formation, and osteophyte formation, observed in the femoral condyle and tibial plateau. Markedly less severity of knee joint degradation was observed following treatment with TXC or GlcN (Table I; P<0.05).

TXC inhibits cartilage tidemark replication. Tibial plateau cartilage from the OA group showed evident histological changes, such as moderate-to-severe hypocellularity, complete disorganization, proteoglycan reduction on Safranin O-fast green staining of ECM, denudation of articular surface and fissures extending into the deep zones, and tidemark replication, compared to the control group (Fig. 2A-F). Osteophytes were present at the medial margins of the tibial plateau. In turn, tibial plateau cartilage from the control group showed homogeneous and intense staining of proteoglycans at ECM, normal cellularity and structure across the different layers, and tidemark wave-shaped (Fig. 2G and H). As shown in Fig. 2I-L, tibial plateau cartilage following the treatment with TXC or GlcN displayed improvement in cellularity and cellular organization in chondron-like manner, although there was some diffuse hypercellularity compared to the OA group. There was also reduction of structure irregularities and mild improvement of ECM. The Mankin scores of cartilage in both the TXC or GlcN and OA groups were significantly higher than those in the control group (P<0.01), and in the TXC or GlcN groups they were significantly lower than those in the OA group (P<0.01) (Fig. 2M).

TXC delays chondrocyte and subchondral bone degradation. Ultrastructural study of tibial plateau cartilage in both the TXC or GlcN and OA groups by TEM revealed distinctive differences compared to control cartilages. The cartilage in the OA group showed microscopic evidence of surface fibrillation, loss of ECM staining in the superficial region for proteoglycans, several apoptotic cells and reduced cellularity. Apoptotic cells were shrunken and clearly retracted from the surrounding ECM. The ultrastructural characteristics of apoptotic cells that we observed were the presence of nuclear blebbing, apoptotic bodies and cell shrinkage, whereas intensified staining of the

Table I. Kellgren-Lawrence X-ray grade standard in the different groups.

<table>
<thead>
<tr>
<th>Group</th>
<th>G0</th>
<th>G1</th>
<th>G2</th>
<th>G3</th>
<th>G4</th>
</tr>
</thead>
<tbody>
<tr>
<td>OA</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td>Control</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GlcN+OA</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>TXC+OA</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>5</td>
<td>2</td>
</tr>
</tbody>
</table>

*P<0.05, *P<0.01, compared with the OA group; †P<0.01 compared with the control group. G, Grade.
cytoplasm, blebbing of the cell membrane, and condensation of the chromatin were observed less frequently (Fig. 3A and B). The ECM contained degradation of several collagen fibers (Fig. 3C).

The subchondral bone showed loosening and irregularity of collagen arrangement, dense crystals of calcium and phosphorus (Fig. 3D). The cartilage in the control group showed chondrocytes were generally round and characterized by several microvilli-like structures and corrugations at the chondrocytic surface, some cells with the characteristics of autophagosomes (Fig. 3E). The cytoplasm contained some mitochondria and a relatively abundant number of organelles assumed either rod-like or spherical morphology, and presented clearly visible cristae. The nucleus of chondrocytes showed lobate or indentation morphology, heterochromatin was observed preferentially at the periphery of the nucleus (Fig. 3F). The ECM typically consists of a network of tightly packed and highly cross-linked collagen fibrils (Fig. 3G). The subchondral bone showed regularity of collagen arrangement, uniform distribution of calcium phosphate crystals (Fig. 3H). Markedly less severity of cartilage and subchondral bone degradation was observed in the treatment with TXC or GlcN (Fig. 3I-Q).

TXC enhances the autophagy-related proteins against chondrocyte apoptosis. We then examined whether another type of cell death, autophagy, was involved in OA pathogenesis. We first examined the conversion of LC3 from an 18 kDa form (LC3 I) to a faster-migrating 16 kDa form (LC3 II), ULK1 and Beclin1. As shown in Fig. 4A-E, a western blot assay demonstrated a decrease in LC3 I/II, ULK1 and Beclin1 levels in the OA group compared to those in the control group (P<0.01). However, LC3 I/II, ULK1 and Beclin1 levels in both the TXC and the GlcN group significantly increased compared to those in the OA group (P<0.05, P<0.01).
Discussion

The present study systematically evaluated the cartilage protection mechanisms of TXC in papain-induced OA. Our results clearly showed that TXC could improve the arrangement of subchondral bone collagen fibers and calcium phosphate crystals, inhibit the tidemark replication and delay the cartilage degradation. In addition, our study showed that TXC upregulated the protein levels of LC3 I/II, ULK1 and Beclin1, demonstrating that it could inhibit the tidemark replication and cartilage degradation by the activation of chondrocyte autophagy.

A number of treatment programs of OA have been developed, such as medications with NSAIDs and chondroprotective drugs. However, major problems associated with medications still remain, particularly with the side-effects of NSAIDs. Thus, there is a pressing need to develop alternative approaches to OA treatment (17). Complementary and alternative medicine, including TCM, has been reported to be clinically effective in treating OA by inhibiting chondrocyte apoptosis (14). However, the molecular mechanism of the therapeutic effect of TXC remains largely unknown. Therefore, the present study examined whether TXC regulates the tidemark replication and cartilage degradation by the regulation of chondrocyte autophagy.

Tidemark, a distinct boundary between non-calcified and calcified articular cartilage and not an artifact, has been described as a haematoxyphil single line which is approximately 10-µm thick (18,19). Chondrocytes near the tidemark must regulate the turnover of non-collagenous components in ECM and maintain control over the local ECM (20). During normal development and growth of diarthrodial joints, the tidemark clearly represents a calcification front. In the normal adult joint, the tidemark is still a single structure, ceases the advance of mineral into the hyaline cartilage, although a residual ‘maintenance’ turnover of ECM may occur (21). Under these conditions, although the tidemark still contains some tightly bound calcium, it may have ceased to function as a calcification front. It is possible that the tidemark has changed in function to one of inhibiting the growth or forma-
tion of microcrystals of hydroxyapatite result in protecting the hyaline cartilage from passive progressive mineralization at this stage. This may be an irreversible change, so that if new mineralization is activated in OA, a new tidemark may actively form distally to the original one, leaving its predecessor as a non-functional relic, and thus providing an explanation of tidemark replication. The tidemark replication in OA is characterized by an endochondral ossification process advancing calcification of zone IV and replacement of calcified cartilage by new bone at the calcified cartilage-bone interface, and these events must be precisely determined and regulated by adjacent chondrocytes (22). Histological measures of articular cartilage pathology, generally considered to be the reference standard for presence and severity of OA, showed significant tidemark replication and cartilage degradation in the OA group compared to the control group, indicating that OA was successfully induced by papain. In the present study, the TXC+OA group showed a smaller increase in knee joint width and an inhibition of cartilage degradation as compared to the OA group. Collectively, the above findings support a role for TXC in the protection of cartilage and chondrocyte metabolism, suggesting a possible mechanism by which TXC may help to alleviate clinical signs and retard progression of OA.

OA is characterized by cartilage degradation and subchondral bone changes. Microcracks in the calcified tissues may enhance cellular activity leading to increased bone remodeling (23,24). Although the relationship between cartilage degradation and subchondral bone changes remains controversial, the subchondral bone is considered to play an important role in OA initiation and progression. During the OA process, the subchondral bone would then become stiffer, causing a reduced shock-absorbing capacity and leading to progression of these lesions (25,26). However, other research shows that the stiffness of subchondral bone in OA is actually...
induced OA. These results suggested that compromised
be a protective or homeostatic mechanism in normal cartilage.
This study confirmed that autophagy may serve to delay the onset of apoptosis, further experiments are in progress to explore
the mechanism of TXC in the regulation of the relationship
between the induction of autophagy and apoptosis.

Acknowledgements
This study was supported by the National Natural Science
Foundation of China (Grant no. 81102609), the Key Project of Fujian Provincial Department of Science and Technology
(Grant no. 2012Y0046), the Natural Science Foundation of Fujian Province (Grant no. 2011J05074) and the Young Talent
Scientific Research Project of Fujian Province Universities
(Grant no. JA12165).

References
chondrocyte proliferation via G1/S cell cycle transition. Int J Mol
2. Wu MX, Li XH, Lin MN, et al: Clinical study on the treatment of
knee osteoarthritis of shenmai insufficiency syndrome type by
for exercise on severity of experimental osteoarthritis in rats: a
glucosamine modulates the response of the liver and lymphocytes
of the mesenteric lymph nodes in a papain-induced model of joint
5. Esswaramoorthy R, Chang CC, Wu SC, Wang GJ, Chang JK and
Ho ML: Sustained release of PTH(1-34) from PLGA microspheres suppresses osteoarthrits progression in rats. Acta
in osteoarthritis - a three-dimensional stereological study in 21
7. Lyons TJ, Stoddart RW, McClure SF and McClure J: The
tidemark of the chondro-osseous junction of the normal human
8. Deucker J, Mokassa L, Aerssens J and Boonen S: Bone density
and local growth factors in generalized osteoarthritis. Micros
10. Almonte-Becerril M, Navarro-Garcia F, Gonzalez-Robles A,
Vega-Lopez MA, Lalavle C and Kouri JB: Cell death of chon-
drocytes is a combination between apoptosis and autophagy
during the pathogenesis of Osteoarthritis within an experimental
11. Kim HA, Lee YJ, Seong SC, Choe KW and Song YW: Apoptotic
chondrocyte death in human osteoarthritis. J Rheumatol 27:
12. Caramés B, Taniguchi N, Otsuki S, Blanco FJ and Lotz M:
Autophagy is a protective mechanism in normal cartilage, and
its aging-related loss is linked with cell death and osteoarthritis.
13. Lotz MK and Caramés B: Autophagy and cartilage homeostasis
mechanisms in joint health, aging and OA. Nat Rev Rheumatol
suppression of sodium nitroprussiate-induced chondrocyte
apoptosis by Tongu Xiaotong Capsule-containing serum. Chin J
15. Kellgren JH and Lawrence JS: Radiological assessment of rheu-
16. Mankin HJ, Dorfman H, Lippeljol L, and Zarrin A: Biochemical
and metabolic abnormalities in articular cartilage from osteo-
arthritic human hips. II. Correlation of morphology with biochemical and metabolic data. J Bone Joint Surg Am 53:
NSAIDs and risk of hip or knee replacements: a population-