In vivo high-resolution magic angle spinning proton NMR spectroscopy of Drosophila melanogaster flies as a model system to investigate mitochondrial dysfunction in Drosophila GST2 mutants

  • Authors:
    • Valeria Righi
    • Yiorgos Apidianakis
    • Nikolaos Psychogios
    • Laurence G. Rahme
    • Ronald G. Tompkins
    • A. Aria Tzika
  • View Affiliations

  • Published online on: April 24, 2014     https://doi.org/10.3892/ijmm.2014.1757
  • Pages: 327-333
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

In vivo nuclear magnetic resonance spectroscopy (NMR), a non-destructive biochemical tool used for investigating live organisms, has recently been performed in studies of the fruit fly Drosophila melanogaster, a useful model organism for investigating genetics and physiology. We used a novel high-resolution magic angle-spinning (HRMAS) NMR method to investigate live Drosophila GST2 mutants using a conventional 14.1-T NMR spectrometer equipped with an HRMAS probe. The results showed that, compared to wild-type (wt) controls, the GST2 mutants had a 48% greater (CH2)n lipid signal at 1.33 ppm, which is an insulin resistance biomarker in Drosophila skeletal muscle (P=0.0444). The mutants also had a 57% greater CH2C= lipid signal at 2.02 ppm (P=0.0276) and a 100% greater -CH=CH- signal at 5.33 ppm (P=0.0251). Since the -CH=CH- signal encompasses protons from ceramide, this latter difference is consistent with the hypothesis that the GST2 mutation is associated with insulin resistance and apoptosis. The findings of this study corroborate our previous results, support the hypothesis that the GST2 mutation is associated with insulin signaling and suggest that the IMCL level may be a biomarker of insulin resistance. Furthermore, direct links between GST2 mutation (the Drosophila ortholog of the GSTA4 gene in mammals) and insulin resistance, as suggested in this study, have not been made previously. These findings may thus be directly relevant to a wide range of metabolically disruptive conditions, such as trauma, aging and immune system deficiencies, that lead to increased susceptibility to infection.

References

1 

Weybright P, Millis K, Campbell N, Cory DG and Singer S: Gradient, high-resolution, magic angle spinning 1H nuclear magnetic resonance spectroscopy of intact cells. Magn Reson Med. 39:337–345. 1998. View Article : Google Scholar : PubMed/NCBI

2 

Blankenberg FG, Storrs RW, Naumovski L, Goralski T and Spielman D: Detection of apoptotic cell death by proton nuclear magnetic resonance spectroscopy. Blood. 87:1951–1956. 1996.PubMed/NCBI

3 

Cheng LL, Ma MJ, Becerra L, et al: Quantitative neuropathology by high resolution magic angle spinning proton magnetic resonance spectroscopy. Proc Natl Acad Sci USA. 94:6408–6413. 1997. View Article : Google Scholar : PubMed/NCBI

4 

Cheng LL, Newell K, Mallory AE, Hyman BT and Gonzalez RG: Quantification of neurons in Alzheimer and control brains with ex vivo high resolution magic angle spinning proton magnetic resonance spectroscopy and stereology. Magn Reson Imaging. 20:527–533. 2002. View Article : Google Scholar

5 

Millis KK, Maas WE, Cory DG and Singer S: Gradient, high-resolution, magic-angle spinning nuclear magnetic resonance spectroscopy of human adipocyte tissue. Magn Reson Med. 38:399–403. 1997. View Article : Google Scholar : PubMed/NCBI

6 

Millis K, Weybright P, Campbell N, et al: Classification of human liposarcoma and lipoma using ex vivo proton NMR spectroscopy. Magn Reson Med. 41:257–267. 1999. View Article : Google Scholar : PubMed/NCBI

7 

Barton SJ, Howe FA, Tomlins AM, et al: Comparison of in vivo 1H MRS of human brain tumours with 1H HR-MAS spectroscopy of intact biopsy samples in vitro. MAGMA. 8:121–128. 1999.

8 

Griffin JL, Williams HJ, Sang E and Nicholson JK: Abnormal lipid profile of dystrophic cardiac tissue as demonstrated by one- and two-dimensional magic-angle spinning (1)H NMR spectroscopy. Magn Reson Med. 46:249–255. 2001. View Article : Google Scholar

9 

Tzika AA, Cheng LL, Goumnerova L, et al: Biochemical characterization of pediatric brain tumors by using in vivo and ex vivo magnetic resonance spectroscopy. J Neurosurg. 96:1023–1031. 2002. View Article : Google Scholar : PubMed/NCBI

10 

Tugnoli V, Schenetti L, Mucci A, et al: Ex vivo HR-MAS MRS of human meningiomas: a comparison with in vivo 1H MR spectra. Int J Mol Med. 18:859–869. 2006.

11 

Astrakas LG, Goljer I, Yasuhara S, et al: Proton NMR spectroscopy shows lipids accumulate in skeletal muscle in response to burn trauma-induced apoptosis. FASEB J. 19:1431–1440. 2005. View Article : Google Scholar : PubMed/NCBI

12 

Tzika AA, Astrakas LG, Cao H, et al: Murine intramyocellular lipids quantified by NMR act as metabolic biomarkers in burn trauma. Int J Mol Med. 21:825–832. 2008.PubMed/NCBI

13 

Bollard ME, Garrod S, Holmes E, et al: High-resolution (1)H and (1)H-(13)C magic angle spinning NMR spectroscopy of rat liver. Magn Reson Med. 44:201–207. 2000. View Article : Google Scholar : PubMed/NCBI

14 

Szczepaniak LS, Babcock EE, Schick F, et al: Measurement of intracellular triglyceride stores by H spectroscopy: validation in vivo. Am J Physiol. 276:E977–E989. 1999.PubMed/NCBI

15 

van der Graaf M, Tack CJ, de Haan JH, Klomp DW and Heerschap A: Magnetic resonance spectroscopy shows an inverse correlation between intramyocellular lipid content in human calf muscle and local glycogen synthesis rate. NMR Biomed. 23:133–141. 2009.

16 

Jacob S, Machann J, Rett K, et al: Association of increased intramyocellular lipid content with insulin resistance in lean nondiabetic offspring of type 2 diabetic subjects. Diabetes. 48:1113–1119. 1999. View Article : Google Scholar : PubMed/NCBI

17 

Petersen KF, Befroy D, Dufour S, et al: Mitochondrial dysfunction in the elderly: possible role in insulin resistance. Science. 300:1140–1142. 2003. View Article : Google Scholar : PubMed/NCBI

18 

Feala JD, Coquin L, McCulloch AD and Paternostro G: Flexibility in energy metabolism supports hypoxia tolerance in Drosophila flight muscle: metabolomic and computational systems analysis. Mol Syst Biol. 3:992007. View Article : Google Scholar : PubMed/NCBI

19 

Pedersen KS, Kristensen TN, Loeschcke V, et al: Metabolomic signatures of inbreeding at benign and stressful temperatures in Drosophila melanogaster. Genetics. 180:1233–1243. 2008. View Article : Google Scholar : PubMed/NCBI

20 

Bharucha KN: The epicurean fly: using Drosophila melanogaster to study metabolism. Pediatr Res. 65:132–137. 2009.PubMed/NCBI

21 

Null B, Liu CW, Hedehus M, Conolly S and Davis RW: High-resolution, in vivo magnetic resonance imaging of Drosophila at 18.8 Tesla. PLoS One. 3:e28172008. View Article : Google Scholar : PubMed/NCBI

22 

Righi V, Apidianakis Y, Rahme LG and Tzika AA: Magnetic resonance spectroscopy of live Drosophila melanogaster using magic angle spinning. J Vis Exp. 38:17102010.

23 

Baker KD and Thummel CS: Diabetic larvae and obese flies-emerging studies of metabolism in Drosophila. Cell Metab. 6:257–266. 2007. View Article : Google Scholar : PubMed/NCBI

24 

Leopold P and Perrimon N: Drosophila and the genetics of the internal milieu. Nature. 450:186–188. 2007. View Article : Google Scholar

25 

Singh SP, Coronella JA, Benes H, Cochrane BJ and Zimniak P: Catalytic function of Drosophila melanogaster glutathione S-transferase DmGSTS1–1 (GST-2) in conjugation of lipid peroxidation end products. Eur J Biochem. 268:2912–2923. 2001.PubMed/NCBI

26 

Meiboom S and Gill D: Modified spiin-echo method for measuring nuclear relaxation time. Rev Sci Instrum. 29:688–691. 1958. View Article : Google Scholar

27 

Levenberg K: A method for the solution of certain non-linear problems in least squares. Q Appl Math. 2:164–168. 1944.

28 

Marquardt D: An algorithm for least-squares estimation of nonlinear parameters. SIAM J Appl Math. 11:431–441. 1963. View Article : Google Scholar

29 

Swanson MG, Zektzer AS, Tabatabai ZL, et al: Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn Reson Med. 55:1257–1264. 2006. View Article : Google Scholar : PubMed/NCBI

30 

Righi V, Apidianakis Y, Psychogios N, Rahme LG, Tompkins RG and Tzika AA: In vivo high-resolution magic angle spinning proton NMR spectroscopy of Drosophila melanogaster flies as a model system to investigate mitochondrial dysfunction in Drosophila mutants. Intl Soc Mag Reson Med. 1460:192011.

31 

Garofalo RS: Genetic analysis of insulin signaling in Drosophila. Trends Endocrinol Metab. 13:156–162. 2002. View Article : Google Scholar : PubMed/NCBI

32 

Saltiel AR and Kahn CR: Insulin signalling and the regulation of glucose and lipid metabolism. Nature. 414:799–806. 2001. View Article : Google Scholar : PubMed/NCBI

33 

Abmayr SM, Zhuang S and Geisbrecht ER: Myoblast fusion in Drosophila. Methods Mol Biol. 475:75–97. 2008. View Article : Google Scholar

34 

Richardson B, Beckett K and Baylies M: Visualizing new dimensions in Drosophila myoblast fusion. Bioessays. 30:423–431. 2008. View Article : Google Scholar : PubMed/NCBI

35 

Rochlin K, Yu S, Roy S and Baylies MK: Myoblast fusion: when it takes more to make one. Dev Biol. 341:66–83. 2010. View Article : Google Scholar : PubMed/NCBI

36 

Partridge L and Tower J: Yeast, a feast: The fruit fly Drosophila as a model organism for research into aging. The Molecular Biology of Aging. Guarente L and Partridge L: Cold Spring Harbor Laboratory Press; pp. 267–308. 2008

37 

Marsh JL and Thompson LM: Drosophila in the study of neurodegenerative disease. Neuron. 52:169–178. 2006. View Article : Google Scholar

38 

Ramsden S, Cheung YY and Seroude L: Functional analysis of the Drosophila immune response during aging. Aging Cell. 7:225–236. 2008.

39 

Zerofsky M, Harel E, Silverman N and Tatar M: Aging of the innate immune response in Drosophila melanogaster. Aging Cell. 4:103–108. 2005.PubMed/NCBI

40 

Ocorr K, Akasaka T and Bodmer R: Age-related cardiac disease model of Drosophila. Mech Ageing Dev. 128:112–116. 2007. View Article : Google Scholar : PubMed/NCBI

41 

Smith JM, Bozcuk AN and Tebbutt S: Protein turnover in adult Drosophila. J Insect Physiol. 16:601–613. 1970. View Article : Google Scholar

42 

Webster GC, Beachell VT and Webster SL: Differential decrease in protein synthesis by microsomes from aging Drosophila melanogaster. Exp Gerontol. 15:495–497. 1980. View Article : Google Scholar : PubMed/NCBI

43 

Gartner LP: Aging and the visceral musculature of the adult fruitfly: an ultrastructural investigation. Trans Am Microsc Soc. 96:48–55. 1977. View Article : Google Scholar : PubMed/NCBI

44 

Miller MS, Lekkas P, Braddock JM, et al: Aging enhances indirect flight muscle fiber performance yet decreases flight ability in Drosophila. Biophys J. 95:2391–2401. 2008. View Article : Google Scholar : PubMed/NCBI

45 

Takahashi A, Philpott DE and Miquel J: Electron microscope studies on aging Drosophila melanogaster. 3 Flight muscle. J Gerontol. 25:222–228. 1970. View Article : Google Scholar

46 

Zheng J, Edelman SW, Tharmarajah G, Walker DW, Pletcher SD and Seroude L: Differential patterns of apoptosis in response to aging in Drosophila. Proc Natl Acad Sci USA. 102:12083–12088. 2005. View Article : Google Scholar : PubMed/NCBI

47 

Ferguson M, Mockett RJ, Shen Y, Orr WC and Sohal RS: Age-associated decline in mitochondrial respiration and electron transport in Drosophila melanogaster. Biochem J. 390:501–511. 2005. View Article : Google Scholar : PubMed/NCBI

48 

Girardot F, Lasbleiz C, Monnier V and Tricoire H: Specific age-related signatures in Drosophila body parts transcriptome. BMC Genomics. 7:692006. View Article : Google Scholar : PubMed/NCBI

49 

Magwere T, Goodall S, Skepper J, Mair W, Brand MD and Partridge L: The effect of dietary restriction on mitochondrial protein density and flight muscle mitochondrial morphology in Drosophila. J Gerontol A Biol Sci Med Sci. 61:36–47. 2006. View Article : Google Scholar : PubMed/NCBI

50 

Sohal RS, Sohal BH and Orr WC: Mitochondrial superoxide and hydrogen peroxide generation, protein oxidative damage, and longevity in different species of flies. Free Radic Biol Med. 19:499–504. 1995. View Article : Google Scholar : PubMed/NCBI

51 

Goddeeris MM, Cook-Wiens E, Horton WJ, et al: Delayed behavioural aging and altered mortality in Drosophila beta integrin mutants. Aging Cell. 2:257–264. 2003.PubMed/NCBI

52 

Miller BM, Zhang S, Suggs JA, et al: An alternative domain near the nucleotide-binding site of Drosophila muscle myosin affects ATPase kinetics. J Mol Biol. 353:14–25. 2005. View Article : Google Scholar : PubMed/NCBI

53 

Kronert WA, Dambacher CM, Knowles AF, Swank DM and Bernstein SI: Alternative relay domains of Drosophila melanogaster myosin differentially affect ATPase activity, in vitro motility, myofibril structure and muscle function. J Mol Biol. 379:443–456. 2008.PubMed/NCBI

54 

Kronert WA, Melkani GC, Melkani A and Bernstein SI: Mutating the converter-relay interface of Drosophila myosin perturbs ATPase activity, actin motility, myofibril stability and flight ability. J Mol Biol. 398:625–632. 2010.PubMed/NCBI

55 

Das N, Levine RL, Orr WC and Sohal RS: Selectivity of protein oxidative damage during aging in Drosophila melanogaster. Biochem J. 360:209–216. 2001. View Article : Google Scholar : PubMed/NCBI

56 

Toroser D, Orr WC and Sohal RS: Carbonylation of mitochondrial proteins in Drosophila melanogaster during aging. Biochem Biophys Res Commun. 363:418–424. 2007. View Article : Google Scholar : PubMed/NCBI

57 

Wheeler JC, Bieschke ET and Tower J: Muscle-specific expression of Drosophila hsp70 in response to aging and oxidative stress. Proc Natl Acad Sci USA. 92:10408–10412. 1995.

58 

Zhan M, Yamaza H, Sun Y, Sinclair J, Li H and Zou S: Temporal and spatial transcriptional profiles of aging in Drosophila melanogaster. Genome Res. 17:1236–1243. 2007. View Article : Google Scholar : PubMed/NCBI

59 

Singh SP, Niemczyk M, Saini D, Awasthi YC, Zimniak L and Zimniak P: Role of the electrophilic lipid peroxidation product 4-hydroxynonenal in the development and maintenance of obesity in mice. Biochemistry. 47:3900–3911. 2008. View Article : Google Scholar : PubMed/NCBI

60 

Weis J, Johansson L, Ortiz-Nieto F and Ahlstrom H: Assessment of lipids in skeletal muscle by LCModel and AMARES. J Magn Reson Imaging. 30:1124–1129. 2009. View Article : Google Scholar : PubMed/NCBI

61 

Wang L, Salibi N, Wu Y, Schweitzer ME and Regatte RR: Relaxation times of skeletal muscle metabolites at 7T. J Magn Reson Imaging. 29:1457–1464. 2009. View Article : Google Scholar : PubMed/NCBI

62 

Chen JH, Sambol EB, Decarolis P, et al: High-resolution MAS NMR spectroscopy detection of the spin magnetization exchange by cross-relaxation and chemical exchange in intact cell lines and human tissue specimens. Magn Reson Med. 55:1246–1256. 2006. View Article : Google Scholar : PubMed/NCBI

63 

Boesch C, Slotboom J, Hoppeler H and Kreis R: In vivo determination of intra-myocellular lipids in human muscle by means of localized 1H-MR-spectroscopy. Magn Reson Med. 37:484–493. 1997. View Article : Google Scholar : PubMed/NCBI

64 

Vermathen P, Kreis R and Boesch C: Distribution of intramyocellular lipids in human calf muscles as determined by MR spectroscopic imaging. Magn Reson Med. 51:253–262. 2004. View Article : Google Scholar : PubMed/NCBI

65 

Havel RJ, Carlson LA, Ekelund LG and Holmgren A: Turnover rate and oxidation of different free fatty acids in man during exercise. J Appl Physiol. 19:613–618. 1964.PubMed/NCBI

66 

Mehring M: High Resolution NMR in Solids. Springer-Verlag; New York: 1982

67 

Garroway AN: Magic-angle sample spinning of liquids. J Magn Reson. 49:168–171. 1982.

68 

Barbara TM: Cylindrical demagnetization fields and microprobe design in high resolution NMR. J Magn Reson A. 109:2651994. View Article : Google Scholar

69 

Chen JH, Enloe BM, Xiao Y, Cory DG and Singer S: Isotropic susceptibility shift under MAS: the origin of the split water resonances in 1H MAS NMR spectra of cell suspensions. Magn Reson Med. 50:515–521. 2003. View Article : Google Scholar : PubMed/NCBI

70 

Chu SC, Xu Y, Balschi JA and Springer CS Jr: Bulk magnetic susceptibility shifts in NMR studies of compartmentalized samples: use of paramagnetic reagents. Magn Reson Med. 13:239–262. 1990. View Article : Google Scholar : PubMed/NCBI

71 

Kayar SR, Hoppeler H, Howald H, Claassen H and Oberholzer F: Acute effects of endurance exercise on mitochondrial distribution and skeletal muscle morphology. Eur J Appl Physiol Occup Physiol. 54:578–584. 1986. View Article : Google Scholar : PubMed/NCBI

72 

Canavoso LE, Jouni ZE, Karnas KJ, Pennington JE and Wells MA: Fat metabolism in insects. Annu Rev Nutr. 21:23–46. 2001. View Article : Google Scholar

73 

Gilby AR: Lipids and their metabolism in insects. Annu Rev Entomol. 10:141–160. 1965. View Article : Google Scholar

74 

Fast PG: A comparative study of the phospholipids and fatty acids of some insect lipids. Science. 155:1680–1681. 1967.

75 

Stanley-Samuelson DW, Jurenka RA, Cripps C, Blomquist GJ and deRenobales M: Fatty acids in insects: composition, metabolism, and biological significance. Arch Insect Biochem Physiol. 9:1–33. 1988. View Article : Google Scholar

76 

Horne I, Haritos VS and Oakeshott JG: Comparative and functional genomics of lipases in holometabolous insects. Insect Biochem Mol Biol. 39:547–567. 2009. View Article : Google Scholar : PubMed/NCBI

77 

Patel RT, Soulages JL, Hariharasundaram B and Arrese EL: Activation of the lipid droplet controls the rate of lipolysis of triglycerides in the insect fat body. J Biol Chem. 280:22624–22631. 2005. View Article : Google Scholar : PubMed/NCBI

78 

Bharucha KN, Tarr P and Zipursky SL: A glucagon-like endocrine pathway in Drosophila modulates both lipid and carbohydrate homeostasis. J Exp Biol. 211:3103–3110. 2008. View Article : Google Scholar : PubMed/NCBI

79 

Righi V, Apidianakis Y, Mintzopoulos D, Astrakas L, Rahme LG and Tzika AA: In vivo high-resolution magic angle spinning magnetic resonance spectroscopy of Drosophila melanogaster at 14.1 T shows trauma in aging and in innate immune-deficiency is linked to reduced insulin signaling. Int J Mol Med. 26:175–184. 2010.

80 

Machann J, Thamer C, Schnoedt B, et al: Age and gender related effects on adipose tissue compartments of subjects with increased risk for type 2 diabetes: a whole body MRI/MRS study. MAGMA. 18:128–137. 2005. View Article : Google Scholar : PubMed/NCBI

81 

Nakagawa Y, Hattori M, Harada K, Shirase R, Bando M and Okano G: Age-related changes in intramyocellular lipid in humans by in vivo H-MR spectroscopy. Gerontology. 53:218–223. 2007. View Article : Google Scholar : PubMed/NCBI

82 

Muller MJ and Herndon DN: The challenge of burns. Lancet. 343:216–220. 1994. View Article : Google Scholar : PubMed/NCBI

83 

Ikezu T, Okamoto T, Yonezawa K, Tompkins RG and Martyn JA: Analysis of thermal injury-induced insulin resistance in rodents. Implication of postreceptor mechanisms. J Biol Chem. 272:25289–25295. 1997. View Article : Google Scholar : PubMed/NCBI

84 

Sinha R, Dufour S, Petersen KF, et al: Assessment of skeletal muscle triglyceride content by (1)H nuclear magnetic resonance spectroscopy in lean and obese adolescents: relationships to insulin sensitivity, total body fat, and central adiposity. Diabetes. 51:1022–1027. 2002. View Article : Google Scholar

85 

Schrauwen-Hinderling VB, Hesselink MK, Schrauwen P and Kooi ME: Intramyocellular lipid content in human skeletal muscle. Obesity (Silver Spring). 14:357–367. 2006. View Article : Google Scholar : PubMed/NCBI

86 

Consitt LA, Bell JA and Houmard JA: Intramuscular lipid metabolism, insulin action, and obesity. IUBMB Life. 61:47–55. 2009. View Article : Google Scholar : PubMed/NCBI

87 

Johnson AB, Argyraki M, Thow JC, Cooper BG, Fulcher G and Taylor R: Effect of increased free fatty acid supply on glucose metabolism and skeletal muscle glycogen synthase activity in normal man. Clin Sci (Lond). 82:219–226. 1992.PubMed/NCBI

88 

Clancy DJ, Gems D, Harshman LG, et al: Extension of life-span by loss of CHICO, a Drosophila insulin receptor substrate protein. Science. 292:104–106. 2001. View Article : Google Scholar : PubMed/NCBI

89 

Bohni R, Riesgo-Escovar J, Oldham S, et al: Autonomous control of cell and organ size by CHICO, a Drosophila homolog of vertebrate IRS1–4. Cell. 97:865–875. 1999. View Article : Google Scholar : PubMed/NCBI

90 

Paumen MB, Ishida Y, Muramatsu M, Yamamoto M and Honjo T: Inhibition of carnitine palmitoyltransferase I augments sphingolipid synthesis and palmitate-induced apoptosis. J Biol Chem. 272:3324–3329. 1997. View Article : Google Scholar : PubMed/NCBI

91 

Ruddock MW, Stein A, Landaker E, et al: Saturated fatty acids inhibit hepatic insulin action by modulating insulin receptor expression and post-receptor signalling. J Biochem. 144:599–607. 2008. View Article : Google Scholar : PubMed/NCBI

92 

Fernandez-Real JM and Pickup JC: Innate immunity, insulin resistance and type 2 diabetes. Trends Endocrinol Metab. 19:10–16. 2008. View Article : Google Scholar

Related Articles

Journal Cover

July 2014
Volume 34 Issue 1

Print ISSN: 1107-3756
Online ISSN:1791-244X

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
APA
Righi, V., Apidianakis, Y., Psychogios, N., Rahme, L.G., Tompkins, R.G., & Tzika, A.A. (2014). In vivo high-resolution magic angle spinning proton NMR spectroscopy of Drosophila melanogaster flies as a model system to investigate mitochondrial dysfunction in Drosophila GST2 mutants. International Journal of Molecular Medicine, 34, 327-333. https://doi.org/10.3892/ijmm.2014.1757
MLA
Righi, V., Apidianakis, Y., Psychogios, N., Rahme, L. G., Tompkins, R. G., Tzika, A. A."In vivo high-resolution magic angle spinning proton NMR spectroscopy of Drosophila melanogaster flies as a model system to investigate mitochondrial dysfunction in Drosophila GST2 mutants". International Journal of Molecular Medicine 34.1 (2014): 327-333.
Chicago
Righi, V., Apidianakis, Y., Psychogios, N., Rahme, L. G., Tompkins, R. G., Tzika, A. A."In vivo high-resolution magic angle spinning proton NMR spectroscopy of Drosophila melanogaster flies as a model system to investigate mitochondrial dysfunction in Drosophila GST2 mutants". International Journal of Molecular Medicine 34, no. 1 (2014): 327-333. https://doi.org/10.3892/ijmm.2014.1757