Crocin protects retinal ganglion cells against H$_2$O$_2$-induced damage through the mitochondrial pathway and activation of NF-κB

BOCHANG LV1, TAO CHEN2, ZHIGUO XU1, FUQUAN HUO3, YANYAN WEI2 and XINGUANG YANG1

1Shaanxi Ophthalmic Medical Center, Xi’an No. 4 Hospital, Affiliated Guangren Hospital, School of Medicine, Xi’an Jiaotong University, Xi’an, Shaanxi 710004; 2Department of Anatomy, Histology and Embryology, K.K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, Shaanxi 710032; 3Department of Physiology and Pathophysiology, Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi’an Jiaotong University School of Medicine, Xi’an, Shaanxi 710061, P.R. China

Received February 10, 2015; Accepted October 26, 2015

DOI: 10.3892/ijmm.2015.2418

Abstract. Glaucoma is a degenerative nerve disorder that results in irreversible blindness. It has been reported that the apoptosis of retinal ganglion cells (RGCs) is a hallmark of glaucoma. Oxidative stress is one of the major factors that cause apoptosis of RGCs. Crocin has many beneficial effects, including anti-oxidant and anti-apoptotic actions. However, the mechanism by which crocin protects against oxidative stress-induced damage to RGCs remains unclear. The present study aimed to investigate the mechanism by which crocin protects RGC-5 cells against H$_2$O$_2$-induced damage. H$_2$O$_2$ was used to establish a model of oxidative stress injury in RGC-5 cells to mimic the development of glaucoma in vitro. Different concentrations (0.1 and 1 µM) of crocin were added to test whether crocin was capable of protecting RGCs from H$_2$O$_2$-induced damage. WST-1, lactic dehydrogenase (LDH) release and Annexin V/ FITC assays were then performed. Levels of reactive oxygen species (ROS) were detected using a ROS assay kit, mitochondrial membrane potential (ΔΨm) was analyzed by JC-1 staining, caspase-3 activity was examined using a Caspase-3 assay kit, and the protein levels of Bax, Bcl-1 and cytochrome c were measured using western blot analysis. In addition, the protein level of phosphorylated nuclear factor-κB (p-NF-κB) p65 was also evaluated using western blot analysis. The results showed that crocin protected RGC-5 cells from apoptosis, decreased LDH release and enhanced cell viability. Additional experiments demonstrated that crocin decreased ROS levels, increased ΔΨm, downregulated the protein expression of Bax and cytochrome c, promoted Bcl-2 protein expression and activated NF-κB. Taken together, the findings of this study indicate that crocin prevented H$_2$O$_2$-induced damage to RGCs through the mitochondrial pathway and activation of NF-κB.

Introduction

Glaucoma is a degenerative nerve disorder, which is characterized by optic atrophy and visual field defects, and results in irreversible blindness. It has been reported that almost 64.3 million patients suffered from glaucoma worldwide in 2013, and this number is likely to increase to 76 million in 2020 and 111.8 million in 2040 (1). The hallmark of glaucoma is the apoptosis of retinal ganglion cells (RGCs), which are the only efferent neurons that convey visual signals from the retina to the brain. Several risk factors, including elevated intraocular pressure (2), oxidative stress (3), elevated glutamate (4) and aging (5), have been considered to contribute to the RGC apoptosis in glaucoma, among which, oxidative stress is considered as the final common pathway in glaucoma (6). Several studies have reported that oxidative stress can lead to apoptosis of RGCs through activation of the mitochondrial pathway (7), and that apoptosis is the main cause of RGC loss (8). Thus, identifying a way of inhibiting oxidative stress-induced apoptosis in RGCs may provide an effective therapy for glaucoma.

Oxidative stress is able to destroy mitochondrial membrane potential (ΔΨm), induce mitochondrial DNA damage and the release of apoptosis-related factors, and thus, trigger apoptosis (9). Mitochondria play an important role in the functioning and survival of RGCs (10,11), and mitochondrial dysfunction has been observed in glaucoma patients (12). Mitochondrial dysfunction is regarded as an early event in the mitochondrial apoptotic pathway. In the mitochondrial apoptotic pathway, mitochondrial dysfunction and the activation of pro-apoptotic...
Bcl-2 family members has been demonstrated to induce the release of cytochrome c, which forms the apoptosome complex, and contributes to the activation of caspase-9 and the cleavage of caspase-3. The mitochondrial-dependent apoptosis of RGCs has been previously investigated. As an important consequence of mitochondrial dysfunction caused by oxidative stress, excessive reactive oxygen species (ROS) are capable of mediating mitochondrial permeability transition and the release of pro-apoptotic proteins, and thus, stimulate the mitochondrial apoptotic pathway.

Saffron is a traditional medicine that is frequently used in clinical therapy. The clinical therapeutic effects of saffron have been demonstrated in cancer (16), hypertension (17), insomnia and anxiety (18), cerebral ischemia (19) and depression (20). The effect of saffron on retinal diseases has also been demonstrated by improving focal macular electroretinogram parameters (21), inhibiting cell death induced by intense light (22), and treating macula lutea and ischemic retinopathy caused by old age (23). Crocetin and crocin are two major active ingredients of saffron. Crocetin can be capable of preventing the retina damage induced by oxidative and endoplasmic reticulum stresses through inhibition of the activity of caspase-3 and -9 (24), and of protecting the retina from ischemic damage via the inhibition of oxidative stress (25). Crocin has also been shown to exert a protective effect on retinal ischemia/reperfusion (IR) injury-induced apoptosis of RGCs (26). However, the mechanism by which crocin protects against oxidative stress-induced damage of RGCs remains unclear.

In the present study, we investigated the protective effects of crocin on RGCs under oxidative stress. Hydrogen peroxide (H_2O_2) was used to establish a model of oxidative stress injury in RGCs to mimic RGC injury in glaucoma in vitro. The anti-apoptotic effect of crocin was determined in addition, the activity of phosphorylated nuclear factor-kB (p-NF-kB) p65 was also measured using western blot analysis.

Materials and methods

Cell culture. RGC-5 cells, obtained from the American Type Culture Collection (Cat. no. PT6600; ATCC, Manassas, VA, USA), were cultured in Dulbecco's modified Eagle's medium (DMEM) supplemented with 10% fetal bovine serum (FBS) (both from Gibco, Carlsbad, CA, USA), 100 U/ml penicillin and 100 µg/ml streptomycin (both from Sigma-Aldrich, St. Louis, MO, USA). Cells were grown in a humidified incubator with 5% CO$_2$ at 37°C and passaged every three days. Second generation RGCs were used in our experiments.

Establishment of a model of oxidative stress injury in RGCs and crocin treatment. The cells were equally divided into five groups, which were treated with different concentrations of H_2O_2 (0, 200, 400, 800 and 1,000 µM) for 16 h. Cell viability and lactic dehydrogenase (LDH) release were tested to investigate the cell injury induced by H_2O_2 in RGCs, and an appropriate concentration was chosen to establish the model of oxidative stress injury in RGCs.

RGC-5 cells were pre-treated with 0.1 and 1 µM of crocin (Sigma-Aldrich) for 24 h, and no drugs were added to the control group. The cells were then subjected to oxidative insult with H_2O_2 (800 µM) for 16 h and collected for subsequent experiments.

WST-1 cell proliferation assay. Cell viability was determined using a WST-1 assay (Roche Diagnostics GmbH, Mannheim, Germany). Briefly, the cells were cultured as described above. WST-1 reagent (10 µl) was then added to each well, and incubated for 4 h at 37°C. The optical density (OD) was read at 440 nm using a microplate reader (FLUOSTar Omega, BMG Labtech, Ortenberg, Germany).

LDH release assay. LDH release was determined using a LDH cytotoxicity detection kit (Takara Bio, Tokyo, Japan). Briefly, the cells were cultured in 96-well plates and 100 µl cell suspensions of RGCs were collected to assess the LDH activity. Fresh reaction mixture (100 µl) was then added to each well and incubated at room temperature for 30 min. The absorbance was determined at 490 nm using a microplate reader (Bio-Rad, Hercules, CA, USA).

Annexin V/FITC assay. Apoptotic cells were quantified using a FITC Annexin V apoptosis detection kit (BD Biosciences, Piscataway, NJ, USA). Approximately 1x105 cells were collected and resuspended with 100 µl of binding buffer. Then, 5 µl of FITC Annexin V and 5 µl of propidium iodide (PI) were added to stain cells for 15 min at room temperature in the dark. Subsequently, 400 µl of 1X binding buffer was added prior to analysis by flow cytometry (BD Biosciences).

ROS assay. The level of intracellular ROS was evaluated using a ROS assay kit (Beyotime Biotech, Jiangsu, China). Briefly, the cells were harvested and washed by 1X buffer, and then stained with 20 µM of dichloro-dihydro-fluorescein diacetate (DCFH-DA; 1:1,000) for 20 min at 37°C. The signal was read at excitation/emission (Ex/Em) wavelengths of 488/525 nm filter after the cells were further washed three times using PBS. Cells treated with ROSup (provided with the ROS assay kit) only were used as negative controls.

Measurement of ΔΨm. JC-1 fluorescent dye 9 (Beyotime Biotech) was used to measure ΔΨm. The cells were collected and incubated with JC-1 staining solution at 37°C for 15 min in a 5% CO$_2$ incubator, and then resuspended with 500 µl of preheated incubation buffer. The green fluorescence (JC-1-monomer) was viewed at Ex/Em 490/530 nm, and the red fluorescence (JC-1-aggregate) was viewed at Ex/Em wavelengths of 525/590 nm.

Caspase-3 activity assay. The enzymatic activity of caspase-3 was detected by a caspase-3 assay kit (Abcam, Cambridge, MA, USA). Briefly, the cells were suspended in lysis buffer and incubated on ice for 10 min. Reaction buffer and DEVD-AFC substrate were then added prior to being read at Ex/Em wavelengths of 400/505 nm.

Western blot analysis. The total protein was extracted from RGC-5 cells using RIPA (Beyotime Biotech) and its concentration was determined using a bicinchoninic acid (BCA) assay. The proteins were electrophoresed on 10% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and then transferred onto nitrocellulose membranes (Amersham;
GE Healthcare Europe GmbH, Freiburg, Germany. The membranes were blocked with 5% (v/v) dried milk and probed with anti-Bax, anti-Bcl-2, anti-cytochrome c (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) and anti-p-NF-κB p65 (Cell Signaling Technology, Inc., Danvers, MA, USA) at 4°C overnight. Subsequently, HRP-conjugated goat anti-mouse IgG (Bioworld Technology, Inc., St. Louis Park, MN, USA) was added and incubated with the membranes for 1 h at room temperature. β-actin (Cell Signaling Technology, Inc,) was used as the reference protein.

Statistical analysis. Data are presented as the means ± SEM. Statistical comparisons were performed using the Student’s t-test. P<0.05 was considered to indicate a statistically significant difference.

Results

Effects of different concentrations of H₂O₂ on cell viability and LDH release in RGC-5 cells. To establish a model of oxidative stress injury in RGCs, different concentrations of H₂O₂ were used to evaluate the cytotoxicity to select an appropriate concentration. The results showed that H₂O₂ is capable of decreasing RGC-5 cell viability in a dose-dependent manner; however, there was no significant difference between concentrations of 800 and 1,000 µM (Fig. 1A). As the concentration of H₂O₂ increased, there was a corresponding gradual increase in the release of LDH (Fig. 1B). The LDH release assay and the WST-1 assay showed a very low gradient from 800 to 1,000 µM. Thus, an H₂O₂ concentration of 800 µM was used to establish the oxidative stress injury in RGCs.

Effects of crocin on cell viability and LDH release in oxidative stress-injured RGC-5 cells. LDH is a stable cytoplasmic enzyme that is present in all cells. When the plasma membrane is damaged, LDH is rapidly released into the culture supernatant, thus, LDH release in the culture supernatant is a measure of cytotoxicity. To evaluate the anti-cytotoxic effect of crocin on RGC-5 cells, an LDH assay was performed using an LDH cytotoxicity assay kit. LDH release in RGC-5 cells was significantly decreased in the presence of crocin. There was no significant difference in the LDH release between crocin concentrations of 0.1 and 1 µM (P>0.05) (Fig. 2A). To understand the cytoprotective effects of crocin in H₂O₂-insulted RGC-5 cells, a WST-1 assay was performed to determine cell viability. Crocin significantly enhanced RGC-5 cell viability in H₂O₂-insulted cells (P<0.05), and this effect was not concentration-dependent (P>0.05) (Fig. 2B). These results indicated that crocin could enhance the cell viability of RGC-5 cells that have been injured by H₂O₂.

Effect of crocin on the apoptosis of oxidative stress-injured RGC-5 cells. H₂O₂-induced apoptosis of RGC-5 cells was analyzed using flow cytometry through Annexin V-FITC/PI...
staining. The percentages of apoptotic cells decreased from 45.39% without crocin, to 32.15% in the presence of 0.1 µM and 28.16% in the presence of 1 µM crocin (Fig. 3). Crocin significantly inhibited H₂O₂-induced apoptosis in RGC-5 cells and there was no significant difference in the percentages of apoptotic cells between crocin concentrations of 0.1 and 1 µM.

Effect of crocin on the production of ROS in oxidative stress-injured RGC-5 cells. Intracellular ROS is an oxidative stress indicator in cells that plays an important role in apoptosis induction under physiological and pathological conditions (27). ROS are released from the mitochondria, and excessive ROS are able to disrupt the ΔΨm in return (27). In the present study, excessive ROS was generated in H₂O₂-injured cells (Fig. 4). With the addition of crocin, the intracellular ROS content was markedly reduced compared with the control group, and the difference between crocin concentrations of 0.1 and 1 µM was not significant. These results indicated that crocin exerted an antioxidant effect on the oxidative stress-injured RGC-5 cells.

Effect of crocin on ΔΨm in oxidative stress-injured RGC-5 cells. Mitochondria are closely associated with cell apoptosis, and a decrease in ΔΨm is considered as one of the earliest hallmark events in the cascade reaction process of apoptosis (28). To examine the effect of crocin on H₂O₂-induced ΔΨm disruption, the lipophilic cation JC-1 was used to evaluate ΔΨm. Crocin significantly increased ΔΨm in oxidative stress-injured RGC-5 cells (P<0.05). A significant difference between crocin concentrations of 0.1 and 1 µM was identified, which suggested that the mitochondria-dependent pathway may be involved in the protective effect of crocin on H₂O₂-injured cells (Fig. 5).

Effects of crocin on the activity of caspase-3 and the expression of Bcl-2, Bax and cytochrome c in oxidative stress-injured RGC-5 cells. Caspase-3 is the final effector in the mitochondria-mediated apoptotic pathway (9). Cytochrome c, the anti-apoptotic factor Bcl-2 and pro-apoptotic factor Bax are the key regulating factors in the mitochondrial pathway (14). To investigate the effect of crocin on the apoptosis of RGC-5 cells, we detected the expression of Bcl-2, Bax and cytochrome c using western blot analysis. As shown in Fig. 6A, the expression level of Bcl-2 was markedly higher in the crocin groups than the control group (P<0.05), and the difference between 0.1 and 1 µM crocin was not significant (Fig. 6B). There was also a significant difference in the expression of Bax between the crocin groups and the control group (P<0.05) (Fig. 6C), while no significant difference was observed between 0.1 and 1 µM crocin. Cytochrome c release in oxidative-stress-injured RGC-5 cells was significantly suppressed at crocin concentrations of 0.1 and 1 µM (Fig. 6D), and the inhibitory effect of 1 µM of crocin was significantly stronger than that of 0.1 µM of crocin.

Caspases are aspartic acid proteases containing cysteine, which selectively cleave the target protein of aspartate residue, and thus, induce cell apoptosis. In caspase-dependent signaling, caspase-3 is one of the most important effector caspases, and its activation is the final step of apoptosis (29). To investigate the effect of crocin on H₂O₂-induced activation of caspase-3, we used a caspase-3 assay kit to detect caspase-3 activity. The results showed that crocin treatment significantly inhibited the activation of caspase-3 activity, while there was no significant difference between 0.1 and 1 µM crocin (Fig. 6E).
Effect of crocin on p-NF-κB 65 in oxidative stress-injured RGC-5 cells. NF-κB is a family of nuclear transcription factors that include the subunits Rel, p65, RelB, p50 and p52, which influence cell apoptosis by regulating the expression of...
cell survival genes (30). The phosphorylation of the transcriptional p65 subunit is essential for efficient transcriptional activation by NF-κB (31). Thus, the level of p-NF-κB p65 was measured using western blot analysis in the present experiment. The results showed that the relative p-NF-κB p65 level was markedly increased in the presence of crocin (Fig. 7), which indicates that crocin upregulated the activity of NF-κB in oxidative stress-injured RGC-5 cells.

Discussion

In glaucoma, elevated intraocular pressure is the most significant risk factor for accelerated RGC death. It is widely accepted that oxidative damage in response to pressure elevation is an important underlying mechanism of elevated intraocular pressure-induced cell damage and neuronal death (32,33). Thus, H$_2$O$_2$ was used to establish a model of oxidative stress injury in RGCs to mimic RGC injury in glaucoma in vitro. The LDH and WST-1 assay results showed that H$_2$O$_2$ decreased cell viability and increased LDH release. Efficiency was highest at a concentration of 800 µM, therefore a concentration of 800 µM H$_2$O$_2$ was used to establish the model of oxidative stress injured in RGCs for subsequent experiments.

Crocin is one of the active ingredients of saffron, which is frequently used as a traditional medicine for its antitoxic properties (34). The anti-apoptotic and antioxidant effects of crocin have been stated in several studies (35,36). Qi et al (26) have reported that crocin injections prevented apoptosis of RGCs subsequent to retinal IR injury. In the present study, we
detected changes in the cell viability and apoptosis of H₂O₂-
insulted RGC-5 cells by WST-1 and Annexin V/PI staining in
vitro, respectively. Our results were consistent with those of
Mehri et al (37), who reported that crocin enhanced cell
viability and reduced apoptosis. In addition, we also detected
LDH release in H₂O₂-insulted RGCs using an LDH cytototoxicity
assay kit. LDH release was significantly decreased by crocin
concentrations of 0.1 and 1 µM. Taken together, these results
suggest that crocin prevented H₂O₂-induced damage to RGCs.

One of the important mechanisms by which crocin exerts
its biological effects is its ability to modulate the redox status
of organisms. Evidence has suggested that overproduction of ROS
plays an important role in the protective effects of crocin in
serum-deprived and hypoxic PC12 cells (38). Mousavi et al (39)
have confirmed that crocin decreased the production of ROS
induced by glucose in PC12 cells. To determine the effects of
crocin on the production of ROS in H₂O₂-injured RGC-5 cells,
we determined the production of ROS by performing a cellular
ROS assay. The results showed that H₂O₂-induced production of
ROS was significantly suppressed by crocin, suggesting that
crocin is capable of reducing the ROS level and suppressing
H₂O₂-induced oxidative stress in RGC-5 cells.

There are two main pathways of oxidative stress-induced
apoptosis: mitochondrial- and death receptor-mediated path-
ways (40). In the mitochondrial pathway, Bcl-2 and Bax are the
key regulators. Bcl-2 inhibits apoptosis by suppressing cyto-
chrome c release and caspase activation, while Bax promotes
apoptosis by inducing the release of cytochrome c, which then
triggers the downstream apoptosis event (29). On the other
hand, the release of apoptosis-related factor cytochrome c may
also be inhibited by the rise of the ΔΨm, which decreased
intimal permeability (41). Our results show that crocin effec-

tively prevented H₂O₂-induced apoptosis by increasing ΔΨm,
downregulating Bax and cytochrome c and caspase-3, and
upregulating Bcl-2. This finding indicates that crocin stabilized
the mitochondria and inhibited apoptosis mediated by the mito-

chondrial pathway, thereby protecting RGCs from apoptosis.

NF-κB activity helps cells to avoid the sustained phase of
JNK activation which has been demonstrated to activate the
mitochondrial apoptotic pathway (42), and thus, promotes cell
survival (43,44). NF-κB plays an important role in the apop-

tosis of RGCs mediated by H₂O₂ (45,46). The present study
revealed that the level of p-NF-κB p65 was significantly higher
in the crocin groups than in the control group. This result
suggests that crocin initiated the activation of NF-κB in the
presence of H₂O₂, thereby reducing H₂O₂-induced apoptosis.

Taken together, our results demonstrate that crocin is capable of protecting H₂O₂-injured RGC-5 cells from apop-

tosis through the mitochondrial pathway, and by upregulating
the activity of NF-κB.

Acknowledgements

The present study was supported by the National Natural
Science Foundation of China (no. 81273902).

References

1. Tham YC, Li X, Wong TY, Quigley HA, Aung T and Cheng CY:
Global prevalence of glaucoma and projections of glaucoma
burden through 2040: a systematic review and meta-analysis.
2. Khan AK, Tse DY, van der Heijden ME, Shah P, Nusbaum DM,
Yang Z, Wu SM and Frankfort BF: Prolonged elevation of intra-
ocular pressure results in retinal ganglion cell loss and abnormal
of protocatechuic acid on retinal ganglion cells from oxidative
4. Harada T, Harada C, Nakamura K, Quah HM, Okumura A,
Nakawake K, Sueki T, Aiba M, Yoshida H, Mitani A and Tanaka K:
The potential role of glutamate transporters in the pathogenesis
5. Levkovitch-Verbin H, Vander S, Makarovsky D and Lavinsky F:
Increase in retinal ganglion cells' susceptibility to elevated intra-
ocular pressure and impairment of their endogenous neuro-
6. Chrysostomou V, Rezania F, Trounce IA and Crowston JG:
Oxidative stress and mitochondrial dysfunction in glaucoma.
7. Sancho P, Fernández C, Yuste VJ, Amrán D, Ramos AM,
de Blas E, Susin SA and Aller P: Regulation of apoptosis/necrosis
execution in cadmium-treated human mononuclear cells under
8. Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL and
Di D, A: The molecular basis of retinal ganglion cell death in
9. Circu ML and Ay TY: Reactive oxygen species, cellular redox
10. Yang XJ, Ge J and Zhuo YH: Role of mitochondria in the
pathogenesis and treatment of glaucoma. Chin Med J (Engl) 126:
4338-4365, 2013.
and Schapira AH: Mitochondrial dysfunction in glaucoma:
Understanding genetic influences. Mitochcnndria 12: 202-212,
2012.
abnormalities in patients with primary open-angle glaucoma.
and Boise LH: Caspase-9, caspase-3 and caspase-7 have distinct
mitochondrial pathways of apoptosis. Adv Exp Med Biol 942:
15. Meng QF, Lv J, Ge H, Zhang L, Xue F, Zhu Y and Liu P:
Overexpressed mutant optineurin (E50K) induces retinal
ganglion cells apoptosis via mitochondrial pathway. Mol Biol
16. Abdullaev FI and Espinoso-Aguirre JJ: Biomedical properties
of saffron and its potential use in cancer therapy and chemopre-
17. Imenshahidi M, Hosseinizadeh H and Jawadpour Y: Hypotensive
effect of aqueous saffron extract (Crocus sativus L.) and its
constituents, safranal and crocin, in normotensive and hyper-
18. Hosseinizadeh H and Noraei NB: Anxiolytic and hypnotic effect
of Crocus sativus aqueous extract and its constituents, crocin and
19. Hosseinizadeh H, Sadeghnia HR, Ghaeni FA, Motamedshariaty
V and Mohajeri SA: Effects of saffron (Crocus sativus L.) and its
active constituent, crocin, on recognition and spatial memory
after chronic cerebral hypoperfusion in rats. Phytoter Res 26:
381-386, 2012.
20. Akhondzadeh Basti A, Moshiri E, Noorbala AA, Jamshidi AH,
Abbasi SH and Akhondzadeh S: Comparison of petal of
Crocus sativus L. and fluoxetine in the treatment of depressed
outpatients: A pilot double-blind randomized trial. Prog
21. Falsini B, Piccardi M, Minnella A, Savastano C, Capoluongo E,
Fadda A, Balestrazzi E, Maccarone R and Bisti S: Influence
of saffron supplementation on retinal flicker sensitivity in early
age-related macular degeneration. Invest Ophthalmol Vis Sci 51:
6118-6124, 2010.
22. Maccarone R, Di Marco S and Bisti S: Saffron supplement
maintains morphology and function after exposure to damaging
light in mammalian retina. Invest Ophthalmol Vis Sci 49:
1254-1261, 2008.
23. Moghaddasi MS: Saffron chemicals and medicine usage. J Med

