miR-152 inhibits rheumatoid arthritis synovial fibroblast proliferation and induces apoptosis by targeting ADAM10

JIALONG GUO1, JUAN DU1, DAN FEI2, JIE XING2, JINXIANG LIU3 and HONGHUA LU3

1Department of Rheumatology and Immunology, 2Ultrasonographic Department, The China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033; 3Department of Pediatrics, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China

Received December 7, 2017; Accepted April 5, 2018

DOI: 10.3892/ijmm.2018.3636

Abstract. miR-152 has been reported to be downregulated in rheumatoid arthritis (RA). However, the functional significance and molecular mechanisms underlying the role of miR-152 in RA remain largely unknown. The present study aimed to explore the functional role and the underlying mechanisms of miR‑152 in RA. The expression of miR‑152 in serum, synovial tissues, and fibroblast-like synoviocytes (FLS) from patients with RA and healthy controls was detected by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). Cell proliferation, cell cycle phase distribution and apoptosis of FLS were measured by Cell Counting Kit‑8 and flow cytometry assays. The effects of miR‑152 on the production of pro‑inflammatory cytokines, including tumor necrosis factor (TNF)‑α, interleukin (IL)‑1β, IL‑6 and IL‑8, were examined by ELISA. The target gene of miR‑152 was discovered by miRNA‑target prediction bioinformatics analysis, and confirmed by dual‑luciferase reporter assay, RT‑qPCR and western blotting. Spearman's correlation analysis was performed to assess the relationship between miR‑152 expression and a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10). The results demonstrated that miR‑152 expression levels were significantly decreased in RA serum, synovial tissues and RA‑FLS compared with healthy controls. Overexpression of miR‑152 significantly inhibited cell proliferation, promoted cell apoptosis, and decreased TNF‑α, IL‑1β, IL‑6 and IL‑8 production in RA‑FLS cells. Additionally, ADAM10 was demonstrated to be a target of miR‑152, and expression of the two genes was significantly negatively correlated. Of note, restoration of ADAM10 expression partially reversed the effects of miR‑152 on cell proliferation and apoptosis in RA‑FLS. Thus, miR-152 may serve as a potential target for therapeutic intervention in RA.

Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease pathologically characterized by inflammatory cell infiltration, joint swelling, pannus formation, articular cartilage degradation and structural bone erosion, which leads to progressive disability and premature death (1). RA fibroblast-like synoviocytes (RA-FLS) have been reported to be involved in RA aggressiveness by producing abundant cytokines and matrix metalloproteinases (MMPs) (2). In addition, FLS proliferation causes the immune reaction and subsequently results in the impairment of joint tissue (3). In light of the key role of FLS in RA, it has become a hot topic of study to determine potential elements that can regulate FLS activity.

MicroRNAs (miRNAs) are small (18-25 nucleotides in length), single stranded, non-coding RNAs that can regulate gene expression by sequence-specific binding to the 3'‑untranslated regions (3'UTR) of target mRNAs, leading to mRNA destruction or translational inhibition (4,5). It has been increasingly evident that miRNAs serve crucial roles in various biological functions, including proliferation, invasion, apoptosis and differentiation (6,7). Abnormal miRNA expression has been reported to be involved in the occurrence and development of RA, suggesting that miRNAs might serve as diagnosis markers or therapy targets for this disease (8,9).

miR-152 has been widely studied as a tumor suppressor by inhibiting tumor growth (10‑15). A recent study has demonstrated that miR -152 inhibits the production of cytokines, including interleukin (IL)-12, IL‑6 and tumor necrosis factor (TNF)-α (16). In addition, miR-152 inhibits the interferon-β-mediated upregulation of major histocompatibility complex class II and the dendritic cell-initiated antigen-specific T cell proliferation by targeting Calcium/calmodulin-dependent protein kinase type II α chain (CaMKIIα) (16), suggesting that miR-152 is involved in regulating the immune response. As far as RA is concerned, miR-152 has been demonstrated to be downregulated in an arthritic rat model (17,18), and to decrease FLS proliferation...
by inhibiting Wnt pathway activation (18). However, the functional significance and molecular mechanisms underlying the role of miR-152 in human RA remain largely unknown. The aim of the present study was therefore to explore the functional role and the underlying mechanism of miR-152 in RA.

Materials and methods

Tissue specimen collection and FLS culture. Serum and synovial tissue samples from 20 patients with RA (14 women and 6 men; 35-72 years old; mean age, 52) were obtained during joint surgery at the China-Japan Union Hospital of Jilin University (Changchun, China) from July 2015 to July 2016. Specimens from ten healthy donors (6 men and 4 women; age range, 34-69 years old; mean age, 51) were obtained from patients with joint trauma undergoing joint replacement surgery at the China-Japan Union Hospital of Jilin University. Healthy control specimens were selected by excluding for other diseases, such as autoimmune diseases, infectious diseases and cancer. All participants gave informed consent and agreed to participate in the study. This study was approved by the Research Ethics Committee of Jilin University (Changchun, China).

FLS were prepared from the synovial tissues of three healthy donors or three patients with RA, as described previously (18), and termed normal-FLS and RA-FLS respectively. FLS were prepared in Durbecco's modified Eagle's medium (DMEM; Gibco; Thermo Fisher Scientific, Inc., Waltham, MA, USA) containing 10% fetal bovine serum (FBS; Gibco; Thermo Fisher Scientific, Inc., Kumamoto, Japan). Briefly, following transfection for 24 h, RA-FLS cultured in DMEM medium containing 10% FBS were seeded into 96-well plates at a density of 5x10^3 cells/well for 24-72 h. Subsequently they were treated with 20 µl CCK-8 solution for 4 h. Absorbance was detected at 450 nm using a microplate reader (SpectraMAX Plus; Molecular Devices, LLC, Sunnyvale, CA, USA).

Cell transfection. miR-152 mimic (5'-UCAGUGCUAGGACAGACUUGG-3') or corresponding negative control mimic miR-NC (5'-GCAGGCTGCUCCAGGGUGAA-3') were purchased from RiboBio Co., Ltd (Guangzhou, China), and were transiently transfected into RA-FLS at a final concentration of 100 nM for 24-72 h using Lipofectamine® 2000 (Thermo Fisher Scientific, Inc., Waltham, MA, USA) according to the manufacturer's instructions. The vector overexpressing a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10-3'UTR) was performed using the QuickChange mutagenesis kit (Stratagene; Agilent Technologies GmbH, Darmstadt, Germany). The proportions of cells in the G0/G1, S, and G2/M phases were determined using a FACSCalibur flow cytometer (BD Biosciences, San Jose, CA, USA) and CellQuest software 3.2 (BD Biosciences).

Cell proliferation assay. Cell proliferation was evaluated using a Cell Counting Kit-8 assay (CCK-8; Dojindo Molecular Technologies, Inc., Kumamoto, Japan). Briefly, following transfection for 24 h, RA-FLS cultured in DMEM medium containing 10% FBS were seeded into 96-well plates at a density of 5x10^3 cells/well for 24-72 h. Subsequently they were treated with 20 µl CCK-8 solution for 4 h. Absorbance was detected at 450 nm using a microplate reader (SpectraMAX Plus; Molecular Devices, LLC, Sunnyvale, CA, USA) and CellQuest software 3.2 (BD Biosciences).

Cell cycle assay. RA-FLS were harvested at 48 h post-transfection and fixed in 75% iced ethanol alcohol overnight at 4°C. Subsequently, RNaseA was added and the cells were placed in a water bath in the dark for 30 min. Then RA-FLS were resuspended in 500 µl of binding buffer containing 5 µl of propidium iodide (PI; Sigma-Aldrich; Merck KGaA, Darmstadt, Germany). The proportions of cells in the G0/G1, S, and G2/M phases were determined using a FACSCalibur flow cytometer (BD Biosciences). The data was analyzed with CellQuest software 3.2 (BD Biosciences).

Cell apoptosis assay. Cell apoptosis was determined using an Annexin V-FITC Apoptosis Detection kit (KeyGEN Biotech Co., Ltd., Nanjing, China) according to the manufacturer's protocol, using a FACS-Calibur flow cytometer (BD Biosciences). The data was analyzed with CellQuest software 3.2 (BD Biosciences).

ELISA. At 48 h post-transfection, RA-FLS were harvested by centrifugation at 3,000 x g for 10 min at 4°C. TNF-α, IL-1β, IL-6 and IL-8 levels in the supernatant were measured using TNF-α, IL-1β, IL-6 and IL-8 ELISA kits (cat nos. 550612, 557996, 550799 and 5507999, respectively; BD Biosciences) according to the manufacturer's protocol. The optical density (OD) value at 450 nm was measured using Titertek Multiscan MCC 340 (Thermo Labsystems, Helsinki, Finland).

miRNA target prediction and luciferase reporter assay. TargetScan7.1, PicTar and miRDB were used to predict the putative targets of miR-152 (21-23). The ADAM10 3'UTR target site for miR-152 was synthesized and inserted into the pmirGlo luciferase vector (Promega Corporation, Madison, WI, USA), and was designated as WT-ADAM10-3'UTR. Site-directed mutagenesis of the miR-152 target site in the ADAM10-3'UTR was performed using the QuickChange mutagenesis kit (Stratagene; Agilent Technologies GmbH,
Waldbronn, Germany). The mutant vector was designated as MT-ADAM10-3′UTR. For the luciferase reporter assay, RA-FLS were co-transfected with miR-152 mimic or miR-NC, and WT-ADAM10-3′UTR or MT-ADAM10-3′UTR reporter plasmid using Lipofectamine 2000 (Thermo Fisher Scientific, Inc.). At 48 h post-transfection, the Dual-Luciferaser Assay kit (Promega Corporation) was used to assess the relative luciferase activity in the RA-FLS. Renilla luciferase activity was used for normalization.

Western blot analysis. Cytoplasmic and nuclear proteins were extracted from cultured RA-FLS following the instructions of the RIPA buffer kits (Beyotime Institute of Biotechnology, Jiangsu, China). The protein concentrations were quantified using a bicinchoninic acid assay kit (Pierce; Thermo Fisher Scientific, Inc.). A total of 30 µg protein per sample was separated by 10% SDS-PAGE, followed by wet-transfer to polyvinylidene fluoride membranes (Millipore; Merck KGaA). Subsequently, the membrane was blocked for 2 h using 5% skim milk, and incubated with the following antibodies overnight at 4°C: anti-ADAM10 (1:1,000; Santa Cruz Biotechnology, Inc.) and anti-GAPDH (1:3,000; cat no. sc-365062; Santa Cruz Biotechnology, Inc.). Thereafter, the membrane was incubated with horseradish peroxidase-conjugated secondary antibodies (1:5,000; cat no. sc-2005; Santa Cruz Biotechnology, Inc.) at room temperature for 2 h. Protein bands were visualized using enhanced chemiluminescence (ECL; WesternBright ECL kit; Advansta, Inc., Menlo Park, CA, USA) according to the manufacturer’s instructions. Relative protein expression was evaluated using ImageJ software (National Institutes of Health, Bethesda, MD, USA).

Statistical analysis. All statistical analyses were performed using SPSS version 19.0 (IBM Corp., Armonk, NY, USA). Results are expressed as the mean ± standard deviation from ≥3 independent experiments. Differences between two groups were analyzed with the Mann-Whitney test and among three groups with one-way analysis of variance with Tukey’s post hoc test. Spearman’s correlation analysis was performed to examine correlation. P<0.05 was considered to indicate a statistically significant difference.

Results

miR-152 is downregulated in serum, synovial tissues and FLS from patients with RA. To investigate miR-152 expression in serum, synovial tissues and FLS from patients with RA, RT-qPCR was performed. The results revealed that the expression levels of miR-152 in serum, synovial tissues and FLS from patients with RA were decreased compared with the corresponding samples from healthy donors (P<0.05; Fig. 1). These findings suggest that downregulation of miR-152 may be involved in progression of human RA.

miR-152 inhibits cell proliferation and induces apoptosis in RA-FLS. To assess the biological effects of miR-152 in RA-FLS, miR-152 mimic and miR-NC were transiently transfected into RA-FLS and then cell proliferation, cell cycle phase distribution and apoptosis were examined. RT-qPCR analysis confirmed that miR-152 expression was significantly increased in RA-FLS transfected with miR-152 mimic compared with RA-FLS transfected with miR-NC (Fig. 2A). The CCK-8 assay was performed to investigate the effect of miR-152 overexpression in RA-FLS proliferation, and the results demonstrated that restoration of miR-152 expression significantly inhibited RA-FLS proliferation (Fig. 2B). In addition, the effect of miR-152 overexpression on cell cycle phase distribution was investigated in RA-FLS, and the results revealed that overexpression of miR-152 in RA-FLS significantly increased the proportion of cells arrested in the G0/G1 phase, while reducing the proportion of cells in the S phase (Fig. 2C). Cell apoptosis assays demonstrated that restoration of miR-152 expression significantly increased the apoptosis rate of RA-FLSs compared with miR-NC transfection (Fig. 2D).

miR-152 inhibits the expression of pro-inflammatory cytokines in RA-FLS. Next, the effects of miR-152 abnormal expression on the production of pro-inflammatory cytokines were evaluated. The expression levels of TNF-α, IL-1β, IL-6 and IL-8 were assayed in RA-FLS transfected with miR-152 mimic or miR-NC by ELISA. The results demonstrated that overexpression of miR-152 in RA-FLS significantly inhibited the production of TNF-α, IL-1β, IL-6 and IL-8 (Fig. 3A-D).

ADAM10 is a target of miR-152 in RA-FLS. To explore the underlying mechanism in RA-FLS progression, three publicly available miRNA-target prediction tools were used (TargetScan7.1, PicTar and miRDB) in order to discover potential gene targets for miR-152. As illustrated in Fig. 4A, ADAM10 was predicted as a potential target gene for miR-152, with a binding position at 1928-1935 bp. To confirm
Figure 2. miR-152 overexpression inhibits cell proliferation and induces apoptosis in RA-FLS. RA-FLS were transfected with either miR-152 mimic or miR-NC. (A) miR-152 levels in RA-FLS transfected with miR-152 mimic or miR-NC mimic. (B) Cell proliferation, (C) cell cycle phase distribution and (D) apoptosis were determined in RA-FLS post-transfection. All experiments were repeated three times. *P<0.05 and **P<0.01. RA-FLS, rheumatoid arthritis fibroblast-like synoviocytes; NC, negative control; PI, propidium iodide; FITC, fluorescein isothiocyanate.

Figure 3. miR-152 inhibits the expression of pro-inflammatory cytokines in RA-FLS. RA-FLS transfected with miR-152 mimic displayed significantly decreased production of (A) TNF-α, (B) IL-1β, (C) IL-6 and (D) IL-8 compared with RA-FLS transfected with miR-NC. All experiments were repeated three times. *P<0.05 and **P<0.01. RA-FLS, rheumatoid arthritis fibroblast-like synoviocytes; TNF, tumor necrosis factor; IL, interleukin; NC, negative control.
that ADAM10 is a direct target of miR-152, a luciferase reporter assay was conducted in RA-FLS at 48 h following co-transfection of vectors containing wild-type (WT) or mutant (MT) ADAM10 3'UTR sequences, and miR-152 mimic or miR-NC. The results demonstrated that overexpression of miR-152 significantly suppressed the luciferase activity of the reporter WT-ADAM10-3'UTR construct, but not of the mutant ADAM10-3'UTR construct, in RA-FLS (Fig. 4B). In addition, overexpression of miR-152 significantly decreased ADAM10 mRNA levels (Fig. 4C) and the protein level (Fig. 4D). These results suggest that ADAM10 is a direct target of miR-152 in RA-FLS.

ADAM10 is upregulated in RA-FLS and inversely correlated with miR-152. Next, the potential correlation between expression of miR-152 and ADAM10 in synovial tissues from RA patients was investigated. ADAM10 mRNA expression levels were examined in synovial tissues from patients or from healthy donors using RT-qPCR. The results demonstrated that ADAM10 mRNA levels were higher in the synovial tissues from patients with compared with specimens from healthy donors (P<0.05; Fig. 5A). Additionally, ADAM10 transcript levels were also revealed to be inversely correlated with miR-152 expression levels in synovial tissues from RA patients by Spearman's rank test (r=-0.681; P<0.001; Fig. 5B).
ADAM10 mediates the functional effects of miR-152 on RA-FLS. To determine whether the biological role of miR-152 is mediated by repressing the expression of ADAM10, RA-FLS were co-transfected with miR-NC, miR-152 mimic, and miR-152 mimic plus an ADAM10-overexpressing vector that lacks the 3'UTR. The results demonstrated that miR-152-mediated ADAM10 downregulation was restored following co-transfection with miR-152 mimic and ADAM10 plasmid (Fig. 6A). Additionally, the effects of miR-152 on proliferation, cell cycle arrest, and apoptosis were reversed following overexpression of ADAM10 in RA-FLS (Fig. 6B-D). Collectively, these data suggest that miR-152 exerts a suppressive role in RA-FLS by targeting ADAM10.

Discussion

RA-FLS, located in the intimal lining of the synovium, have been reported to have a crucial role in RA, through producing cytokines that perpetuate inflammation and proteases that contribute to cartilage destruction (24). In addition, RA-FLS are implicated in the bone-eroding pannus formation and advanced angiogenesis of the joint (25). Direct targeting of RA-FLS is considered as a novel method to ameliorate the course of the disease. A growing body of evidence has revealed that miRNAs are involved in RA initiation and development by regulating RA-FLS progression (26). For example, Qu et al. (27) reported that miR-126 targeting phosphoinositol-3 kinase regulatory subunit 2 significantly promotes growth and resistance apoptosis of RA-FLS by regulating the PI3K/AKT signaling pathway. Zhang et al. (28) reported that overexpression of miR-125b promotes inflammation in RA-FLS by activation of the nuclear factor (NF)-κB pathway. Yang and Yang (29) demonstrated that downregulation of miR-221 significantly suppressed the expression of pro-inflammatory cytokines and chemokines, and inhibited FLS migration and invasion via inhibiting vascular endothelial growth factor, MMP3 and MMP9 expression. In the present study, the results demonstrated that miR-152 was downregulated in serum, synovial tissues and FLS from patients with RA compared with healthy controls, which is consistent with a previous report that miR-152 expression was decreased in FLS from an arthritic rat model (18). The present results also demonstrated that overexpression of miR-152 suppressed RA-FLS proliferation, promoted apoptosis, and decreased the production of TNF-α, IL-1β, IL-6 and IL-8. Finally, the present study identified and confirmed that ADAM10 was a direct and functional target of miR-152 in RA-FLS.
and molecular mechanisms underlying the role of miR-152 in RA remained largely unknown. In the present study, RT-qPCR was used to determine miR-152 expression in humans, and the results revealed that miR-152 was frequently downregulated in serum, synovial tissues and FLS from patients with RA compared with healthy controls. The results also demonstrated that miR-152 could inhibit RA-FLS progression by inhibiting cell proliferation, promoting cell apoptosis, and reducing cytokine production.

In order to identify the mechanisms by which miR-152 regulates RA-FLS, three publicly available miRNA-target prediction tools (TargetScan7.1, PicTar and miRDB) were used to discover potential targets of miR-152. ADAM10, a member of the ADAM family, has been reported to be involved in initiation and development of multiple diseases (32). In RA, it has been reported that ADAM10 was overexpressed in RA synovial tissue and was critical in RA angiogenesis (33). In addition, ADAM10 silencing has been reported to suppress the expression of TNF-α, IL-6, IL-8 and chemokine (C-X-C motif) ligand 16 in human RA-FLS, and to inhibit RA-FLS proliferation, migration and invasion, as well as to reduce the arthritis score in collagen-induced arthritis mice (34). In the present study, it was confirmed that ADAM10 was a direct target of miR-152 in RA-FLS by luciferase reporter assay, RT-qPCR and western blot analysis. The increased expression of ADAM10 mRNA was also examined in synovial tissues from patients with RA by RT-qPCR. The results confirmed that miR-152 expression levels in the RA synovial tissues were negatively associated with the expression of ADAM10 mRNA by Spearman's correlation. Additionally, further experiments indicated that the effects of miR-152 on proliferation, cell cycle arrest, and apoptosis were reversed following ADAM10 overexpression in RA-FLS. All the above results suggested that miR-152 suppressed proliferation, promoted apoptosis, and decreased cytokine production in RA-FLS, at least in part, by repressing ADAM10.

Due to the limited number of RA patients in the present study, further studies will be necessary to fully explore the potential role of miR-152 in RA progression. However, the present results provide evidence that miR-152 expression is downregulated in serum, synovial tissues and FLS from patients with RA. In addition, the present results indicated that miR-152 inhibited cell proliferation, induced cell apoptosis, and reduced cytokine production in RA-FLS by targeting ADAM10. These findings suggest that miR-152 might serve as a promising new therapeutic target for RA.

Acknowledgements

Not applicable.

Funding

No funding was received.

Availability of data and materials

The analyzed datasets generated during the study are available from the corresponding author on reasonable request.

Authors' contributions

JG and HL conceived the project, supervised the experiments and wrote and revised the manuscript. JD and DF performed the experiments. JX and JL participated in the some of the experiments and data analysis.

Ethics approval and consent to participate

All participants gave informed consent and agreed to participate in the study. This study was approved by the Research Ethics Committee of Jilin University (Changchun, China).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

References

