The effect of arsenicals on ultraviolet-radiation-induced growth arrest and related signaling events in human keratinocytes

  • Authors:
    • Anuradha Mudipalli
    • Russell D. Owen
    • R. Julian Preston
  • View Affiliations

  • Published online on: September 1, 2005     https://doi.org/10.3892/ijo.27.3.769
  • Pages: 769-778
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )


Abstract

The molecular mechanisms mediating arsenic-induced carcinogenesis are not well understood. The role of confounding factors such as ultraviolet radiation (UV), add another level of complexity to the study of arsenic carcinogenesis and the cancer-risk assessment on humans. We hypothesized that arsenicals are capable of overriding the growth arrest caused by UV treatment and may lead to selective proliferation. To test this hypothesis, a primary normal human epidermal keratinocyte (NHEK) cell culture model was used. One group was pre-exposed to UVB (100 mJ/cm2) that arrested a majority (≈95%) of cells in G0/G1 (+UV) and a second group was not exposed to UV (−UV). Treatment of cells with various arsenicals [0-12 µM of inorganic arsenite (iAs), 0-2 µM of methyl oxoarsine (MMAs III) and 0-3 µM of iododimethyl arsine (DMAs III)] indicated a concentration-dependent increase in proliferation at 24 h in the order of DMAs III > MMAs III > iAs. Flow-cytometric analyses revealed differential effects on cell cycle distribution. Analysis of a battery of cell cycle proteins (cyclin D1, cdk5, PCNA, cdc25A and cdc25C) indicated exposure-specific differential expression profiles. Increased activation of JNK phosphorylation (5-10-fold) in the +UV group and the synergistic increase with methyl arsenicals suggested that JNK might be involved in cell survival and proliferative signaling. Induction of EGF levels and increased phosphorylation of the EGF receptor by arsenicals (+UV) suggested that the EGF signaling pathway might mediate arsenical-induced cell proliferation of NHEK cells. Differential activation of ERK1/2 by arsenicals (±UV) suggested that EGF-mediated cell proliferation by arsenicals in UV-treated NHEK cells may not involve ERK activation. Taken together, the data suggest that both UV exposure and methylation status of the arsenicals dictate the participation of key cell cycle proteins and related signaling events in arsenical-induced cell proliferation.

Related Articles

Journal Cover

September 2005
Volume 27 Issue 3

Print ISSN: 1019-6439
Online ISSN:1791-2423

Sign up for eToc alerts

Recommend to Library

Copy and paste a formatted citation
x
Spandidos Publications style
Mudipalli A, Owen RD and Preston RJ: The effect of arsenicals on ultraviolet-radiation-induced growth arrest and related signaling events in human keratinocytes. Int J Oncol 27: 769-778, 2005
APA
Mudipalli, A., Owen, R.D., & Preston, R.J. (2005). The effect of arsenicals on ultraviolet-radiation-induced growth arrest and related signaling events in human keratinocytes. International Journal of Oncology, 27, 769-778. https://doi.org/10.3892/ijo.27.3.769
MLA
Mudipalli, A., Owen, R. D., Preston, R. J."The effect of arsenicals on ultraviolet-radiation-induced growth arrest and related signaling events in human keratinocytes". International Journal of Oncology 27.3 (2005): 769-778.
Chicago
Mudipalli, A., Owen, R. D., Preston, R. J."The effect of arsenicals on ultraviolet-radiation-induced growth arrest and related signaling events in human keratinocytes". International Journal of Oncology 27, no. 3 (2005): 769-778. https://doi.org/10.3892/ijo.27.3.769