Anti-cancer effects of bortezomib against chemoresistant neuroblastoma cell lines \textit{in vitro} and \textit{in vivo}

MARTIN MICHAELIS1, IDUNA FICTNER2, DIANA BEHRENS2, WOLFRAM HAIDER4, FLORIAN ROTHWEILER1, ANDREAS MACK3, JAROSLAV CINATL1, HANS WILHELM DOERR1 and JINDRICH CINATL Jr1

1Institut für Medizinische Virologie, Klinikum der Johann Wolfgang Goethe-Universität, Paul Ehrlich-Str. 40, D-60596 Frankfurt am Main; 2Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, D-13125 Berlin; 3Gamma Knife Zentrum Frankfurt, Schleusenweg 2-16, D-60528 Frankfurt am Main; 4Institute for Animal Pathology, Schönhauser Str. 62, D-13127 Berlin, Germany

Received August 29, 2005; Accepted October 14, 2005

Abstract. The proteasome inhibitor bortezomib (Velcade\textregistered) was recently approved for the treatment of therapy-refractive multiple myeloma and is under investigation for numerous other types of cancer. A phase I clinical trial in paediatric patients resulted in tolerable toxicity. Since the emergence of chemoresistance represents one of the major drawbacks in cancer therapy, we investigated the influence of bortezomib on multi-drug resistant human neuroblastoma cell lines characterised by P-glycoprotein expression and p53 mutation. Nanomolar concentrations of bortezomib inhibited the cell cycle and induced apoptosis in chemosensitive as well as in chemoresistant cell lines. \textit{In vivo} growth of chemosensitive and chemoresistant neuroblastoma cell lines was inhibited to a similar extent. In addition, bortezomib inhibited vessel formation in neuroblastoma xenografts. These findings and the favourable toxicity profile of bortezomib in children make it reasonable to further pursue additional development of the drug for the treatment of neuroblastoma and other paediatric solid tumours.

Introduction

High risk neuroblastoma patients are treated with multimodality therapeutic protocols that use high-dose chemotherapy with autologous bone marrow or stem-cell transplantation (1-3). However, the prognosis for children older than 1 year with metastatic, stage IV neuroblastoma has only improved marginally, and the overall long-term disease-free survival rate still remains low. After initial response to chemotherapy, drug resistance arises in the majority of stage IV and in relapse neuroblastoma disease (4). Thus, the search for effective treatments especially those active against tumours resistant to conventionally used drugs remains a primary goal.

Bortezomib (Velcade\textregistered, formerly PS-341), a dipeptidyl boronic acid, is a novel agent that exerts its anti-cancer effects through specific and selective inhibition of the chemotryptic enzyme activity of the 26S proteasome (5,6). The 26S proteasome pathway plays a pivotal role in the regulated degradation of proteins involved in the cell cycle control and tumour growth, including nuclear factor \(\kappa\)B, p53, and the cyclin-dependent kinase inhibitor p21 (5,6). Preclinical results show that bortezomib suppresses cancer cell growth, induces apoptosis, overcomes resistance to standard chemotherapy agents and radiation therapy, and inhibits angiogenesis in different types of adult cancer (7-9). Numerous clinical trials that evaluate the efficacy of bortezomib against these cancers have been initiated (6). In a recent large multicenter phase II clinical trial approximately one third of patients with advanced multiple myeloma had a significant response to therapy with bortezomib (10). On the basis of these findings, bortezomib was approved in the USA and the EU for the treatment of patients with multiple myeloma who had relapsed after at least two prior treatment regimens and had evidence of resistance to their last treatment (6).

A recent phase I study of bortezomib in paediatric patients with refractory solid tumours (including two patients with neuroblastoma) demonstrated that the drug is well tolerated with minimal systemic toxicity (11). Dose-dependent inhibition of 20S proteasome activity was found in this phase I trial after drug administration. Since the phase I trial involved heavily pretreated patients it is probable that tumour cells exerted resistance to conventionally used drugs. However, whether such resistance may influence sensitivity of solid paediatric tumours to bortezomib has not been studied yet. In order to directly address the sensitivity of chemoresistant...
NB cells to bortezomib, we investigated anti-tumoural effects of the drug in well established resistance models of human tumour cell lines in vitro and in nude mice.

Materials and methods

Materials. Bortezomib (Velcade®) was obtained from Janssen-Cilag, Neuss, Germany. Solutions of vincristine (Sigma-Aldrich, Deisenhofen, Germany) and doxorubicin (Cell Pharm, Hannover, Germany) were prepared in accordance to the manufacturer’s instructions.

Cells. The N-myc amplified cell line UKF-NB-3 was established from metastases harvested in relapse of a patient with Evans stage 4 NB (12). The parental cells were exposed to increasing concentrations of the respective drug and maintained to grow in the presence of 20 ng/ml of doxorubicin (UKF-NB-3rDOX20) or 10 ng/ml vincristine (UKF-NB-3rVCR10), as described previously (12-15). IMR-32 cells and Be(2)-C cells were obtained from ATCC (Manassas, VA, USA). All cell lines were propagated in IMDM supplemented with 10% FBS, 100 IU/ml penicillin and 100 μg/ml streptomycin at 37°C.

UKF-NB-3 cells neither express P-glycoprotein (P-gp) nor harbour a p53 mutation. UKF-NB-3rDOX20 cells increased expression of functional P-gp and wild-type p53. UKF-NB-3rVCR10 cells are characterised by P-gp expression and p53 mutation (12). Be(2)-C cells express high amounts of P-gp (16) whereas IMR-32 do not express P-gp (17). Be(2)-C cells express mutated p53 (18) whereas IMR-32 cells express wild-type p53 (19,20). Table I shows the P-gp and p53 status of the investigated cell lines.

MTT assay. Cell viability was investigated using the modified MTT assay (21), as described previously (14). Cells were grown in 96-well plates with and without addition of drugs. After the incubation period, MTT reagent was added for 4 h. Thereafter, 100 μl of SDS solution (20% SDS in a 1:1 DMF/H2O solution) was added for further 4 h. Plates were read on a multiwell scanning spectrophotometer at the wavelength of 550 nm and the reference wavelength of 620 nm. Cell viability was determined as the relative reduction of the amount of MTT reduced by cells to its blue formazan derivative, which correlates with the amount of viable cells in relation to cell control.

Cell cycle. The cell cycle was determined using a commercial kit (BD Biosciences, Heidelberg, Germany) following the manufacturer’s instructions as described before (22). The assay is based on the simultaneous detection of bromodeoxyuridine (BrdU) incorporation in the DNA after pulse-labeling for 30 min of dividing cells and detection of the cellular DNA content by staining with 7-amino-actinomycin. This combination allows the characterisation of cells that actively synthesise DNA in terms of their cell cycle position (i.e. G0/1, S, or G2/M phases) by flow cytometry.

Apoptosis. Apoptotic cells were detected as the cells with fractional DNA content (‘sub-G1’ cell subpopulation). Cells were fixed with 70% ethanol (v/v) for 2 h at -20°C. The cellular DNA was stained using propidium iodide (20 μg/ml) and analysed by flow cytometry (FacsCalibur, BD Biosciences, Heidelberg, Germany).

Animal experiments. Female NMRI:nu/nu mice (Taconic Europe, Ry, Denmark) weighing between 25 and 30 g received 1x105 UKF-NB-3, UKF-NB-3rDOX20, or UKF-NB-3rVCR10 cells together with Matrigel (1+1) in a total volume of 100 μl subcutaneously into the left flank. Treatment of mice started at palpable tumour size (about 0.05 cm3 - 0.1 cm3). This day was defined as day 0. Bortezomib-treated mice received six tail vein injections of bortezomib (1 mg/kg in 200 μl/20 g body weight of saline) at day 0, 3, 6, 9, 12, and 15. Control animals received tail vein injections of the same volume of saline at day 0, 3, 6, 9, 12, and 15. Tumour volumes and body weights were determined twice per week. Mice were held under germ-poor standardised and controlled environmental conditions. In accordance with the German Tierschutzgesetz, the experiments were finished when the tumour sizes exceeded 1 cm³. To detect haematological toxicity blood parameters (WBC, white blood cells; RBC, red blood cells; HGB, haemoglobin; HCT, haematocrit; PLT, platelets; MCV, mean corpuscular volume; MCH, mean corpuscular haemoglobin) were examined 3-5 days after first bortezomib therapy. For that purpose blood was taken from the retrobulbar venous plexus of anaesthetised mice.

After the end of experiments, tumours were excised and cut into two pieces. One piece was embedded in paraffin. Two μm slides were stained with haematoxylin/eosin and investigated for necrosis (indicated by homogeneous eosinophilic areas), mitoses (indicated by mitotic figures consisting of condensed chromosomes), apoptotic cells (indicated by cell shrinkage and condensed chromosomes) and infiltrative growth into the surrounding tissue. Ten visual fields were examined by magnification x400. Apoptosis and mitoses were classified in a blinded manner to low grade (1-2 mitoses/apoptotic cells/visual field), medium grade (3-5 mitoses/apoptotic cells/visual field), and high grade (>5 mitoses/apoptotic cells/visual field). The tumour microvessel densities were determined at cryoslides of tumours with a murine anti-CD31 (BD Pharmingen). The staining was performed with a secondary horse radish conjugated antibody (Dako).

Results

Influence of bortezomib on neuroblastoma cell viability in vitro. Different neuroblastoma cells were incubated for five days with bortezomib, vincristine, or doxorubicin. IC50-values are presented in Table I. UKF-NB-3rDOX20, UKF-NB-3rVCR20, and Be(2)-C cells proved to be resistant to vincristine or doxorubicin treatment whereas UKF-NB-3 and IMR-32 cells were sensitive to both drugs. In contrast, bortezomib strongly impaired the viability of all five cell lines tested in nanomolar concentrations. The IC50 value of bortezomib-treated UKF-NB-3rDOX20 cells (4.0±0.32 nm) was in the range of the IC50 values of the chemosensitive cell lines UKF-NB-3 and IMR-32. This shows that the cytotoxic effects of bortezomib are not affected by P-gp expression. In contrast, the p53-mutated cell lines Be(2)-C and UKF-NB-3rVCR10 showed an about 2-fold decreased sensitivity to bortezomib treatment.
Bortezomib inhibits neuroblastoma cell cycle and induces apoptosis. Treatment of UKF-NB-3, UKF-NB-3 rVCR10, and UKF-NB-3 rDOX20 cells with bortezomib 1 nM for 48 h resulted in a moderate increased number of cells in G0/G1-phase. In contrast, bortezomib 10 nM induced a significant cell cycle inhibition by G2/M block (Fig. 1). Bortezomib 1 nM treatment for 48 h did not significantly affect the number of apoptotic cells as detected by the cell number of the ‘sub-G1’ population. Bortezomib 10 nM strongly induced apoptosis after 48 h incubation time (Fig. 2). The pro-apoptotic effect was significantly increased in wild-type p53-expressing UKF-NB-3 and UKF-NB-3 rDOX20 cells compared to p53-mutated UKF-NB-3 rVCR10 cells.

Bortezomib inhibits neuroblastoma xenograft growth. As shown before (12), the tumourigenicity of the chemoresistant cell lines was increased compared to the parental UKF-NB-3 cell line. Of 30 mice injected with UKF-NB-3 cells only three mice developed tumours. These tumours were passaged in vivo and 31 mice were transplanted. From these 31 mice, 13 mice developed tumours, which were used for experiments. In contrast to this, 16 out of 16 UKF-NB-3 rVCR10- and 15 out of 16 UKF-NB-3 rDOX20-cell-injected mice developed tumours.

Table I. P-gp expression, p53-status, and sensitivity to bortezomib, doxorubicin, or vincristine of the cell lines investigated.

<table>
<thead>
<tr>
<th>Cell line</th>
<th>P-gp</th>
<th>p53 mutation</th>
<th>Bortezomib (nM)</th>
<th>Vincristine (nM)</th>
<th>Doxorubicin (nM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>UKF-NB-3</td>
<td>-</td>
<td>-</td>
<td>4.18±0.74</td>
<td>0.27±0.08</td>
<td>10.5±2.4</td>
</tr>
<tr>
<td>UKF-NB-3 rVCR10</td>
<td>+</td>
<td>+</td>
<td>8.49±2.07</td>
<td>80.1±10.6</td>
<td>120±24</td>
</tr>
<tr>
<td>UKF-NB-3 rDOX20</td>
<td>+</td>
<td>-</td>
<td>4.00±0.32</td>
<td>218±35</td>
<td>123±19</td>
</tr>
<tr>
<td>Be(2)-C</td>
<td>+</td>
<td>+</td>
<td>7.43±1.29</td>
<td>12.6±2.1</td>
<td>381±51</td>
</tr>
<tr>
<td>IMR-32</td>
<td>-</td>
<td>-</td>
<td>4.13±0.29</td>
<td>0.39±0.04</td>
<td>16.4±2.8</td>
</tr>
</tbody>
</table>

Figure 1. Influence of bortezomib on the cell cycle of neuroblastoma cells. Non-synchronised UKF-NB-3, UKF-NB-3 rVCR10, or UKF-NB-3 rDOX20 cells were incubated without or with bortezomib 1 nM, bortezomib 10 nM for 48 h. The cell cycle distribution was detected in viable cells. The experiment presented is representative for three independent experiments.

Figure 2. Influence of bortezomib on neuroblastoma cell apoptosis. UKF-NB-3, UKF-NB-3 rVCR10, or UKF-NB-3 rDOX20 cells were incubated without or with bortezomib 1 nM, bortezomib 10 nM for 48 h. Apoptotic cells were detected as the cells with fractional DNA content (‘sub-G1’ cell subpopulation). The values are mean ± SD of three independent experiments.
Table II. Tumour volumes and body weights of bortezomib-treated and control animals at the beginning and at the end of the observation period.

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Tumour volume (cm³) (mean ± SD)</th>
<th>Body weight (g) (mean ± SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td></td>
<td>I</td>
<td>II</td>
</tr>
<tr>
<td>UKF-NB-3</td>
<td>0.16±0.12 1.94±1.48</td>
<td>30±3 32±3</td>
</tr>
<tr>
<td>Solvent</td>
<td>0.16±0.11 0.79±0.86</td>
<td>30±3 32±2</td>
</tr>
<tr>
<td>Bortezomib</td>
<td>0.11±0.11 0.79±0.86</td>
<td>30±3 32±2</td>
</tr>
<tr>
<td>UKF-NB-3 rVCR10</td>
<td>0.06±0.03 1.88±1.30</td>
<td>27±2 30±3</td>
</tr>
<tr>
<td>Solvent</td>
<td>0.09±0.09 0.94±0.81</td>
<td>26±2 25±4</td>
</tr>
<tr>
<td>Bortezomib</td>
<td>0.09±0.09 0.94±0.81</td>
<td>26±2 25±4</td>
</tr>
<tr>
<td>UKF-NB-3 rDOX20</td>
<td>0.07±0.04 3.59±1.51</td>
<td>26±1 30±2</td>
</tr>
<tr>
<td>Solvent</td>
<td>0.07±0.04 1.28±0.87</td>
<td>28±2 28±1</td>
</tr>
<tr>
<td>Bortezomib</td>
<td>0.07±0.04 1.28±0.87</td>
<td>28±2 28±1</td>
</tr>
</tbody>
</table>

I, day 0 of treatment; II, last day of observation period (day 23 for UKF-NB-3, day 20 for UKF-NB-3 rVCR10, day 16 for UKF-NB-3 rDOX20). Significance (p<0.05) to corresponding control.

Bortezomib treatment resulted in decreased body weights in the bortezomib-treated mice compared to saline-treated tumour-bearing control animals. Body weights at the beginning and the end of treatment are shown in Table II. Relative body weights of mice during treatment are shown in Fig. 3. In UKF-NB-3- and UKF-NB-3 rVCR10-xenograft bearing mice, the loss of body weight was accompanied by diarrhea. No differences in the blood parameters were observed between bortezomib-treated and control animals (data not shown) except for UKF-NB-3 tumour bearing animals. In this group, bortezomib treatment resulted in a reduction of platelet counts to 50% of controls at days 4 and 10 after initiation of therapy (data not shown).

Bortezomib inhibited tumour growth of all three cell lines investigated. Tumour volumes in cm³ at the beginning and at the end of treatment are shown in Table II. Single tumour growth curves with relative tumour volumes are presented in Fig. 4. In vivo growth of all three cell lines was significantly inhibited by 2-3-fold. In contrast to the in vitro results, no decisive difference could be detected between the influence of bortezomib on the in vivo growth of the cell lines UKF-NB-3, UKF-NB-3 rVCR10, and UKF-NB-3 rDOX20. Notably, tumour growth was totally suppressed in two out of eight UKF-NB-3 rVCR10-tumour bearing mice but in none of the animals with UKF-NB-3 or UKF-NB-3 rDOX20 tumours.

Influence of bortezomib on the tumour histology. The influence of bortezomib on the number of mitoses, apoptotic cells, or infiltrative tumour growth is shown in Table III. Representative haematoxylin/eosin-stained tumour slides are shown in Fig. 5. Bortezomib treatment resulted in a decreased number of mitoses and decreased infiltrative growth in UKF-NB-3, UKF-NB-3 rVCR10, and UKF-NB-3 rDOX20 tumours. In contrast to the in vitro results, bortezomib increased the number of apoptotic cells in UKF-NB-3 rVCR10 xenografts, whereas the number of apoptotic cells was only slightly or not affected in UKF-NB-3 or UKF-NB-3 rDOX20 tumours. The growth of the different tumours was associated with different extents of necrosis. For UKF-NB-3 control tumours the necrotic area was ≤10% of the investigated visual fields in all seven tumours. In contrast, three out of six bortezomib-treated UKF-NB-3 tumours had necrotic areas >10%. The growth of UKF-NB-3 rVCR10 xenografts was characterised by increased and less homogeneous necrosis. Five out of eight tumours had necrotic areas of ≤20% and three tumours had necrotic areas >20%. The growth of UKF-NB-3 rDOX20 xenografts was ≤5% in five out of seven control animals and in five out of eight bortezomib-treated animals. Determination of the mean values of the necrotic areas resulted in a non-significant increase of necrotic areas in bortezomib-treated animals compared to control animals (data not shown).

To investigate the effects of bortezomib on angiogenesis, we quantified tumour microvessel densities in sections from the control and bortezomib-treated neuroblastoma tumours by staining them with an antibody to murine CD31. Significant differences between bortezomib-treated and control animals were not detected.
reductions in CD31 staining were observed in all three neuroblastoma xenografts. Bortezomib treatment reduced the vessel density of UKF-NB-3 tumours by 30±12%, of UKF-NB-3rVCR10 tumours by 62±27%, and of UKF-NB-3rDOX20 tumours by 25±10%. Representative photographs of UKF-NB-3rVCR10 tumour slices stained for CD31 are shown in Fig. 6.

Table III. Influence of bortezomib on tumour cell mitoses, apoptosis, and infiltrative growth.

<table>
<thead>
<tr>
<th>Cell line</th>
<th>Grade</th>
<th>Mitoses</th>
<th>Apoptotic cells</th>
<th>Infiltrative growth</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Bortezomib</td>
<td>Bortezomib</td>
<td>Bortezomib</td>
</tr>
<tr>
<td>UKF-NB-3</td>
<td>0</td>
<td>0/7, 0/6</td>
<td>0/7, 0/6</td>
<td>0/7, 0/6</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>0/7, 0/6</td>
<td>0/7, 0/6</td>
<td>0/7, 0/6</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>1/7, 4/6</td>
<td>1/7, 0/6</td>
<td>6/7, 0/6</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>6/7, 2/6</td>
<td>6/7, 0/6</td>
<td>0/7, 0/6</td>
</tr>
<tr>
<td>UKF-NB-3rVCR10</td>
<td>0</td>
<td>0/8, 0/8</td>
<td>0/8, 0/8</td>
<td>2/8, 5/8</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>0/8, 0/8</td>
<td>0/8, 0/8</td>
<td>4/8, 3/8</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>3/8, 7/8</td>
<td>8/8, 3/8</td>
<td>0/8, 0/8</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>5/8, 1/8</td>
<td>0/8, 0/8</td>
<td>0/8, 0/8</td>
</tr>
<tr>
<td>UKF-NB-3rDOX20</td>
<td>0</td>
<td>0/7, 0/8</td>
<td>0/7, 0/8</td>
<td>0/7, 1/8</td>
</tr>
<tr>
<td></td>
<td>Low</td>
<td>0/7, 0/8</td>
<td>0/7, 0/8</td>
<td>5/7, 7/8</td>
</tr>
<tr>
<td></td>
<td>Middle</td>
<td>1/7, 3/8</td>
<td>0/7, 0/8</td>
<td>2/7, 0/8</td>
</tr>
<tr>
<td></td>
<td>High</td>
<td>6/7, 5/8</td>
<td>7/7, 8/8</td>
<td>0/7, 0/8</td>
</tr>
</tbody>
</table>

*Number of animals with tumours showing no (0), low, middle, or high grade mitoses, apoptotic cells, or infiltrative growth.
Bortezomib is a selective inhibitor of the 26S proteasome, a critical nuclear and cytoplasmic proteolytic system that regulates cell proliferation, differentiation, and apoptosis (5). Our data demonstrate that bortezomib inhibits growth of chemosensitive and chemoresistant neuroblastoma cells in vitro and in vivo. The in vitro IC_{50} values ranging from 4 to 8.5 nM were in the range of achievable plasma concentrations >1 μM (6). Bortezomib had been shown before to overcome drug resistances in multiple myeloma cell lines (23). Conflicting data exist on the influence of p53 mutation on the cytotoxic activity of bortezomib. Several studies showed that bortezomib acts on cancer cells independently of the cellular p53 status (5,23-27). Other studies reported that the anticancer mechanism of bortezomib involves p53 activation and stabilisation (26,28) and p53 inactivation reduced the sensitivity of non-small cell lung cancer cells and prostate cancer cells to bortezomib (29,30). Our results indicate an about 2-fold decreased sensitivity of p53-mutated neuroblastoma cells (Be(2)-C, UKF-NB-3rVCR) compared to neuroblastoma cells expressing wild-type p53 (IMR-32, UKF-NB-3, UKF-NB-3rDOX). Since the investigation of a direct contribution of p53 to bortezomib-induced anti-cancer effects was not part of our study, it cannot be definitely concluded if p53 mutation is responsible for the decreased sensitivity of Be(2)-C and UKF-NB-3rVCR cells to bortezomib treatment.

Bortezomib-induced cell cycle inhibition and apoptosis was described in different cancer cell lines (23,24,27-29). While high bortezomib concentrations induced a G2/M cell cycle block (23,24,27-29), bortezomib concentrations that did not significantly inhibit cell proliferation resulted in a
which demonstrated the p53-mutated UKF-NB-3rVCR10 to refractory solid tumours (including two patients with neuro-

recent phase I study of bortezomib in paediatric patients with and thrombopenia in our experiments (36,38,39,43,44). A known adverse effects including body weight loss, diarrhea, (40-42).

few anti-cancer drugs correlates with the cellular p53-status of bortezomib was seen on UKF-NB-3rVCR10 xenografts in nude mice. In addition, bortezomib significantly inhibited and infiltrative tumour growth in all three xenografts grown (62±27% inhibition of angiogenesis) compared to UKF-NB-3rVCR10 cells. In principle, this finding is in concert with the increased IC_{50} values of bortezomib in p53-mutated neuroblastoma cells. However, the differences in the sensitivity to bortezomib-induced apoptosis between p53-positive and p53-negative cells are clearly higher than the differences in the cell viability indicated by the IC_{50} values. Possibly, other cell death mechanisms than apoptosis that are not associated with DNA fragmentation such as autophagia may contribute to the strong differences in the IC_{50} values (31).

In vitro investigations revealed that bortezomib inhibited the growth of UKF-NB-3, UKF-NB-3VCR10, and UKF-NB-3DOX20 xenografts. In contrast to the in vitro results, which demonstrated the p53-mutated UKF-NB-3VCR10 to be less sensitive to bortezomib than UKF-NB-3 or UKF-NB-3DOX20 cells, bortezomib totally inhibited tumour growth of two out of eight UKF-NB-3VCR10 tumours but not of other tumours. Bortezomib had been shown before to inhibit tumour growth, angiogenesis, and metastases and to induce cytotoxicity to tumour cells in different in vivo tumour models (7,24,25,32-39). In our experiments, bortezomib inhibited neuroblastoma growth as indicated by the number of mitoses and infiltrative tumour growth in all three xenografts grown in nude mice. In addition, bortezomib significantly inhibited vessel formation of all three tumours. The strongest effect of bortezomib was seen on UKF-NB-3VCR10 xenografts (62±27% inhibition of angiogenesis) compared to UKF-NB-3 (30±12% inhibition) or UKF-NB-3DOX20 (25±10% inhibition). Although the in vitro results indicated the lowest sensitivity of UKF-NB-3VCR10 cells to bortezomib-induced apoptosis, increased apoptosis in response to bortezomib treatment could solely detected in UKF-NB-3VCR10 tumours. Therefore, increased apoptosis of UKF-NB-3VCR10 cells in vivo is more likely to be attributed to the bortezomib-induced angiogenesis inhibition than to direct effects of bortezomib on UKF-NB-3VCR10 cells in vivo and angiogenesis inhibition may play a central role in bortezomib-induced neuroblastoma growth inhibition in our models. The low incidence of bortezomib-induced apoptosis in vivo is in concert with our results and results of others showing that apoptosis induction is often not the main mechanism for cancer cell death in vivo and that the in vivo action of only few anti-cancer drugs correlates with the cellular p53-status (40-42).

The systemic application of bortezomib was associated with known adverse effects including body weight loss, diarrhea, and thrombopenia in our experiments (36,38,39,43,44). A recent phase I study of bortezomib in paediatric patients with refractory solid tumours (including two patients with neuroblatoma) demonstrated that the drug is well tolerated with minimal systemic toxicity (11) and dose-dependent inhibition of the 20S proteasome activity was found in this phase I trial after drug administration. On the basis of the encouraging preliminary results of adult clinical trials, the favourable toxicity profile of bortezomib in phase I clinical trials in paediatric patients, and our preclinical results on multi-drug resistant neuroblastoma cells it appears reasonable to pursue additional paediatric development of the drug.

Acknowledgements

The authors thank the friendly society ‘Hilfe für krebskranke Kinder Frankfurt e.V.’ and their foundation ‘Frankfurter Stiftung für krebskranke Kinder’ for support. The in vitro experiments were performed with the excellent technical support of Sofia Aidanopolou and the animal experiments were performed with the excellent technical support of B. Büttner and S. Gromova.

References

