Abstract. To identify the molecules involved in esophageal carcinogenesis and those applicable as novel tumor markers and for the development of new molecular therapies, we performed gene expression profile analysis of 19 esophageal squamous cell carcinoma (ESCC) cells purified by laser microbeam microdissection (LMM). Using a cDNA microarray representing 32,256 genes, we identified 147 genes that were commonly up-regulated and 376 transcripts that were down-regulated in ESCC cells compared with non-cancerous esophageal epithelial cells. A comparison of clinicopathological data with the expression profiles of the 19 ESCCs identified 20 genes whose expression levels could most significantly separate cases with lymph node metastasis from those without. In addition, immunohistochemical analysis of candidate tumor markers on tissue microarrays demonstrated transactivation of a secretory protein, transforming growth factor \(\alpha\) (TGFA) in the great majority of 228 ESCC cases and an association of their expression with the poor prognosis of patients. Our data provide valuable information for establishing novel diagnostic markers for early diagnosis and choice of therapy, and identifying therapeutic target molecules for the development of novel anti-cancer drugs and immunotherapy in esophageal cancer treatment.

Introduction

Esophageal squamous cell carcinoma (ESCC) is a tumor with a very poor prognosis, and most patients are at advanced stages at the time of diagnosis (1). Despite using modern surgical techniques combined with various treatment modalities, such as radiotherapy and chemotherapy, the overall 5-year survival rate remains at 40-60% (2). Several tumor markers, such as squamous cell carcinoma antigen (SCC), carcinoembryonic antigen (CEA), and cytokeratin 19-fragment (CYFRA 21-1), are used in clinical diagnosis as well as in patient follow-up. In addition, serum levels of midkine (MDK), CD147, matrix metalloproteinase-2 (MMP-2), MMP-9, and MMP-26 in patients with ESCC were reported to be associated with poor prognosis (3-6). However, no tumor marker has proven to be useful for the detection of ESCC at a potentially curative stage (early stage), and no practical prediction marker is presently available for the selection of treatment modalities for individual patients. Therefore, new diagnostic and therapeutic strategies are urgently needed, i.e. novel tumor markers that can detect this disease at an early stage and be applied to individualized treatments based on the biological characteristics of cancer cells.

Analysis of gene expression profiles on cDNA microarray enables us to perform a comprehensive analysis of gene expression profiles in cancer cells for selecting candidates for the development of novel anti-cancer drugs and tumor markers (7-9), and some studies describing gene expression profiles of human ESCC tissues have been performed (2,10,11). However, since ESCCs contain various types of cells, such as mesenchymal and inflammatory cells, at different proportions (12), all of the previous expression data on human ESCC obtained by use of bulk tumor tissue do not accurately reflect gene expression changes during esophageal carcinogenesis.

In this study, we performed a genome-wide analysis of gene expression profiles of 19 ESCC cells purified by laser microbeam microdissection (LMM) using a cDNA microarray containing 32,256 genes. In the process, we identified a number of genes that were potentially good candidates for the development of novel diagnostic markers, therapeutic drugs, and/or immunotherapy as well as a small subset of biomarkers for predicting the presence of lymph node metastasis. In addition, we confirmed that overexpression of transforming growth factor \(\alpha\) (TGFA) has independent
prognostic value for esophageal cancer by tissue microarray analysis of 228 cases of archived ESCCs.

Materials and methods

Tissue samples and microdissection. Nineteen ESCC tissue samples (5 female and 14 male patients; median age, 66.6 years; range, 51-76 years) were obtained with written informed consent along with adjacent normal esophageal tissue samples from patients undergoing surgery at Hokkaido University and its affiliated hospitals (Sapporo, Japan). All cancer tissues were histopathologically diagnosed as squamous cell carcinoma of the esophagus. Clinical information was obtained from medical records. Clinical stage was judged according to the UICC TNM classification. All specimens were embedded in TissueTek OCT medium (Sakura, Tokyo, Japan) immediately after surgical resection and stored at -80˚C until use. These frozen tissues were cut into 8 μm sections using a cryostat (Sakura, Tokyo, Japan) and then stained with hematoxylin and cosin (H&E) for histological examination. ESCC cells and corresponding normal esophageal epithelial cells were selectively collected using the EZ cut system with a pulsed ultraviolet laser-beam-focus laser (SL Microtest GmbH, Jena, Germany) according to the manufacturer's protocols. RNA isolated from the microdissected normal esophageal epithelial cells of five individuals was mixed and used as a "universal control" for all 19 cancer samples on microarray hybridization.

A total of 228 formalin-fixed primary ESCCs (15 female and 213 male patients; median age, 62.1 years; range, 42-81 years) and adjacent normal esophageal tissue samples used for immunostaining on tissue microarrays were obtained from patients undergoing surgery at Keiukyaku Sapporo Hospital (Sapporo, Japan). This study and the use of all mentioned clinical materials were approved by individual institutional ethics committees.

Cell lines. The human esophageal carcinoma cell lines used in this study were as follows: nine SCC cell lines, TE1, TE2, TE3, TE4, TE5, TE6, TE8, TE9, and TE10; and one adenocarcinoma (ADC) cell line, TE7 (13). All cells were grown in monolayer in appropriate media supplemented with 10% fetal calf serum (FCS) and maintained at 37˚C in a humidified atmosphere of 5% CO₂.

CDNA microarray. We fabricated a genome-wide CDNA microarray with 32,256 CDNAs selected from the UniGene database (build #186) of the National Center for Biotechnology Information (NCBI). This microarray system was essentially a genome-wide CDNA microarray with 32,256 CDNAs selected from the UniGene database (build #186) of the National Center for Biotechnology Information (NCBI). This microarray system was essentially constructed as described previously (14). Briefly, the CDNAs were amplified by RT-PCR using poly(A)+ RNAs isolated from various human organs as templates; the lengths of the amplicons ranged from 200 to 1100 bp, without any repetitive or poly(A) sequences.

RNA extraction, T7-based RNA amplification, and hybridization. Total RNA was extracted from each sample of laser-microdissected cells into 350 μl of RLT lysis buffer (Qiagen, Hilden, Germany). The extracted RNAs were treated for 30 min at room temperature with 30 U of DNase I (Roche Diagnostics, Basel, Switzerland) in the presence of 1 U of RNase inhibitor (Toyobo, Osaka, Japan) to remove any contaminating genomic DNA. After inactivation at 70˚C for 10 min, the RNAs were purified using an RNeasy Mini kit (Qiagen) according to the manufacturer's recommendations. All of the DNase I-treated RNAs were subjected to T7-based RNA amplification; two rounds of amplification yielded 50-100 μg of aRNA from each sample. The 2.5-μg aliquots of aRNA from cancer cells or normal esophageal epithelial cells were then labeled by reverse transcription with Cy5-dCTP or Cy3-dCTP (GE Healthcare/Amersham Biosciences Corp., Piscataway, NJ), respectively, as described elsewhere (8,14). Hybridization, washing, and scanning were also carried out according to methods described previously (8,14).

Data analysis. Signal intensities of Cy3 and Cy5 from the 32,256 spots were quantified and analyzed by substituting backgrounds, using ArrayVision software (Imaging Research, Inc., St. Catharine's, Ontario, Canada). Subsequently, the fluorescent intensities of Cy5 (tumor) and Cy3 (control) for each target spot were adjusted so that the mean Cy5/Cy3 ratio of 52 housekeeping genes on the array was equal to 1. Because data derived from low signal intensities are less reliable, we determined a cutoff value on each slide as described previously (8,14) and excluded genes for further analysis when both Cy3 and Cy5 dyes yielded signal intensities lower than the cutoff. For other genes, we calculated the Cy5:Cy3 ratio using the raw data of each sample.

Identification of genes associated with a risk of lymph node metastasis. Genes associated with clinicopathological features, such as lymph node metastasis-positive (node-positive) (p) or node-negative (n), were chosen according to the following two criteria: i) signal intensities are higher than the cutoff value in at least 50% of either group; and ii) |Medp/Medn| ≥1.2, where Med indicates the median derived from log-transformed relative expression ratios in two groups. Genes were selected as candidates when they met the criteria with a permutation P-value <01 in each clinicopathological status.

We applied a random permutation test to identify genes that were expressed differently in the two groups. The mean (μ) and standard deviation (σ) were calculated from the log-transformed relative expression ratios of each gene in node-positive (p) and node-negative (n) cases. A discrimination score (DS) for each gene was defined using the following equation: $DS = (μ_p - μ_n) / (σ_p + σ_n)$.

We carried out permutation tests to estimate the ability of individual genes to distinguish between two groups; samples were randomly permuted between the two classes 10,000 times. Since the DS data set of each gene showed a normal distribution, we calculated a P-value for the user-defined grouping (15). For this analysis, we applied the expression data of 19 cases whose T factors were either 2 or 3, consisting of 13 lymph node-positive and 6 negative cases.

Calculation of prediction score. We further calculated the prediction score of lymph node metastasis according to procedures described previously (15). Each gene (gi) votes depending on whether the expression level (xi) in the sample is closer to the mean expression level of node-positive cases.
or node-negative cases in reference samples. The magnitude of the vote (v_{i}) reflects the deviation of the expression level in the sample from the average of the two classes: $v_{i} = |\bar{x}_{i} - (\mu_{n} + \mu_{p})/2|$

We calculated the total for node-positive cases (V_{p}) and node-negative cases (V_{n}), and the PS value using the following equation: $PS = \frac{(V_{n} - V_{p})}{(V_{n} + V_{p})} \times 100$, reflecting the margin of victory in the direction of either node-positive cases or node-negative cases. PS values range from -100 to 100, and a higher absolute value of PS reflects a stronger prediction of lymph node metastasis.

Cross-validation of scores and evaluation of classification. The prediction scores of all samples were obtained by a leave-one-out approach, in which one sample is withheld, the permutation P-value and mean expression levels are calculated using remaining samples, and the class of the withheld sample is subsequently evaluated by calculating its prediction score. We repeated this procedure for each of the 19 samples. We calculated the classification score (CS) by using the prediction score of node-positive cases (PS_{p}) and node-negative cases (PS_{n}) in each gene set: $CS = \frac{\mu_{PS_{n}} - \mu_{PS_{p}}}{\bar{\mu}_{PS_{n}} + \bar{\mu}_{PS_{p}}}$. A larger value of CS indicates a better separation of the two groups when using the predictive scoring system.

Semi-quantitative RT-PCR. We selected highly up-regulated genes and examined their expression levels by means of semi-quantitative RT-PCR experiments as previously described (9). A total of 3 μg aliquot of amplified RNA from each sample was reverse-transcribed to single-stranded cDNAs using random primer (Roche Diagnostics) and Superscript II (Invitrogen, Carlsbad, CA). Semi-quantitative RT-PCR experiments were carried out with the following sets of synthesized primers specific to the six representative genes up-regulated in ESCCs or with β-actin (ACTB)-specific primers as an internal control: RAS-like, family 11, member B (RASL11B), 5'-GAGGAAGAATTGCTTTTCTCTTGAGGAGG-3'; and 5'-TTTTAAAGTGGCATCTGTTGGAGG-3'; activated leukocyte cell adhesion molecule (ALCAM), 5'-CAGCCTCAGCTGCTCTCCAC-3' and 5'-TCTGAGCGAAATCACTCATG-3'; transforming growth factor β (TGFA), 5'-GGAAGATAGACAGCAGCCAAC-3' and 5'-TCTGAGGCTCGCTGAGG-3'; melanoma antigen, family A, 4 (MAGEA4), 5'-CTCGGCTGTAGTGTGGGCAAC-3' and 5'-TCTGAGGCTCGCTGAGG-3'; homeobox D11 (HOXD11), 5'-CAGAATCGCAGGATGAAAGATA-3' and 5'-GGATGTTAGGATGAAAGT-3'; sperm-specific antigen 2 (SSFA2), 5'-GCTCCGCTCTGAGGCAACTCATG-3' and 5'-TCTGAGGCTCGCTGAGG-3'; ACTB, 5'-GGAATGAGAGTCCGCTGAGG-3' and 5'-CAAGTGGGTAAAATGCTGTCTTC-3'.

Figure 1. Images illustrating laser-microbeam microdissection (LMM) of a representative ESCC. (A) The samples before dissection, (B) The same sections after microdissection (H&E stain; original magnification, x100). (C) The microdissected cancer cells captured on the collecting cap were also shown. (D) Validation of the six representative gene expression profiles by semi-quantitative RT-PCR.
GTACAGGTAAGC-3'. PCR reactions were optimized for the number of cycles to ensure product intensity within the linear phase of amplification.

Immunohistochemistry and tissue microarray. Tumor tissue microarrays were constructed with 228 formalin-fixed primary esophageal cancers, as described elsewhere (16-18). The tissue area for sampling was selected based on visual alignment with the corresponding H&E-stained section on a slide. Three tissue cores (diameter, 0.6 mm; depth, 3-4 mm) taken from a donor tumor block were placed into a recipient paraffin block with a tissue microarrayer (Beecher Instruments, Sun Prairie, WI). A core of normal tissue was punched from each case, and 5-μm sections of the resulting microarray block were used for immunohistochemical analysis.

To investigate the presence of TGFA protein in clinical samples that had been embedded in paraffin blocks, we stained the sections in the following manner. Briefly, 10 μg/ml of a mouse monoclonal anti-human TGFA antibody (EMD Biosciences, Inc., San Diego, CA) was added to each slide after the blocking of endogenous peroxidase and proteins, and sections were incubated with horseradish peroxidase-labeled anti-mouse IgG [Histofine Simple Stain MAX PO (G), Nichirei, Tokyo, Japan] as the secondary antibody. Substrate-chromogen was added, and the specimens were counterstained with hematoxylin. Three independent investigators semi-quantitatively assessed the TGFA positivity as reported previously (19); cytoplasmic staining intensity was recorded as absent (scored as 0), weakly positive (scored as 1+), or strongly positive (scored as 2+), without prior knowledge of

Table I. Representative up-regulated genes with known function.

<table>
<thead>
<tr>
<th>Accession no.</th>
<th>Symbol</th>
<th>Gene name</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL833566</td>
<td>ALCAM</td>
<td>Activated leukocyte cell adhesion molecule</td>
</tr>
<tr>
<td>NM_005964</td>
<td>MYH10</td>
<td>Myosin, heavy polypeptide 10, non-muscle</td>
</tr>
<tr>
<td>X02761</td>
<td>FN1</td>
<td>Fibronectin 1</td>
</tr>
<tr>
<td>L10678</td>
<td>PFN2</td>
<td>Profilin 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM_002193</td>
<td>INHBB</td>
<td>Inhibin, beta B (activin AB β polypeptide)</td>
</tr>
<tr>
<td>BM677885</td>
<td>RASL1B</td>
<td>RAS-like, family 11, member B</td>
</tr>
<tr>
<td>BM994359</td>
<td>FGFR1</td>
<td>Fibroblast growth factor receptor 1 (fms-related tyrosine kinase 2, Pfeiffer syndrome)</td>
</tr>
<tr>
<td>NM_002391</td>
<td>MDK</td>
<td>Midkine (neurite growth-promoting factor 2)</td>
</tr>
<tr>
<td>CR596794</td>
<td>MLP</td>
<td>MARCKS-like protein</td>
</tr>
<tr>
<td>AK093143</td>
<td>SSFA2</td>
<td>Sperm-specific antigen 2</td>
</tr>
<tr>
<td>BC021290</td>
<td>IMP-2</td>
<td>IGF-II mRNA-binding protein 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NM_021809</td>
<td>TGF2</td>
<td>TGFβ-induced factor 2 (TALE family homeobox)</td>
</tr>
<tr>
<td>NM_003236</td>
<td>TGFA</td>
<td>Transforming growth factor, α</td>
</tr>
<tr>
<td>AA102634</td>
<td>TRAF5</td>
<td>TNF receptor-associated factor 5</td>
</tr>
<tr>
<td>BC005963</td>
<td>MAGEA3</td>
<td>Melanoma antigen, family A, 3</td>
</tr>
<tr>
<td>NM_002362</td>
<td>MAGEA4</td>
<td>Melanoma antigen, family A, 4</td>
</tr>
<tr>
<td>AA781195</td>
<td>PRAME</td>
<td>Preferentially expressed antigen in melanoma</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>U07620</td>
<td>MAPK10</td>
<td>Mitogen-activated protein kinase 10</td>
</tr>
<tr>
<td>AA255900</td>
<td>STK38L</td>
<td>Serine/threonine kinase 38-like</td>
</tr>
<tr>
<td>AB011109</td>
<td>ARK5</td>
<td>AMP-activated protein kinase family member 5</td>
</tr>
<tr>
<td>NM_182734</td>
<td>PLCB1</td>
<td>Phospholipase C, β 1 (phosphoinositide-specific)</td>
</tr>
<tr>
<td>NM_002526</td>
<td>NT5E</td>
<td>5'-nucleotidase, ecto (CD73)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AA043381</td>
<td>HOXD10</td>
<td>Homeobox D10</td>
</tr>
<tr>
<td>BC001873</td>
<td>HEY1</td>
<td>Hairy/enhancer of split-related with YRPW motif 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BU737730</td>
<td>RBP1</td>
<td>Retinol binding protein 1, cellular</td>
</tr>
<tr>
<td>N46424</td>
<td>RAI14</td>
<td>Retinoic acid-induced 14</td>
</tr>
</tbody>
</table>
clinicopathological data. Cases were accepted as being strongly positive only if the reviewers independently defined them as such.

Statistical analysis. Statistical analyses were performed using the StatView statistical program (SAS, Cary, NC). Tumor-specific survival curves were calculated from the date of onset of distant metastasis.
surgery to the time of death related to ESCC, or to the last date of follow-up. Kaplan-Meier curves were calculated for each relevant variable and TGFA expression; differences in survival times among patient subgroups were analyzed using the log-rank test. Univariate and multivariate analyses were performed using the Cox proportional-hazard regression model to determine associations between clinicopathological variables and cancer-related mortality. We first analyzed associations between death and possible prognostic factors including age, gender, pT-classification, pN-classification, and pM classification, taking one factor at a time into consideration. Multivariate Cox analysis was then applied on backward stepwise procedures that always forced strong TGFA expression into the model, along with any and all variables that satisfied an entry level of P<0.05. As the model continued to add factors, independent factors did not exceed an exit level of P<0.05.

Results

Identification of commonly up- and down-regulated genes in ESCC. To obtain accurate gene expression profiles of ESCC cells, we employed LMM to purify the tumor cell population and keep contamination of non-cancerous cells at a minimum level (Figs. 1A-C). We defined the genes for which we were able to obtain expression data in more than 50% (at least 10

Figure 2. (A) Supervised two-dimensional hierarchical clustering analysis using 34 genes associated with lymph node metastasis that were selected by a random permutation test (P-value <0.01). (B) Optimization of the number of discriminating genes. Different prediction scores appear when the number of discriminating genes is changed. The number of discriminating gene sets (from 5 to 34) corresponds to the number of selected genes from the top of the rank-ordered list in Table II. A larger classification score (CS) indicates a better separation of the two groups. The best CS was obtained when the scores using only the 20 top-ranked genes were calculated (P-value <0.0015). (C) The schematic distinction of negative and positive lymph node metastasis cases was verified on the basis of the CS. Green diamonds represent node-negative cases, N(-); red diamonds represent node-positive cases, N(+).
of the 19 cases) of the cancers examined as commonly up- or down-regulated according to the following criteria: genes whose expression ratio was >5.0 in ESCC cells were defined as up-regulated and genes whose expression ratio was <0.2 were defined as down-regulated. A total of 147 genes were identified as commonly up-regulated in ESCC (representative known genes are listed in Table I), and 376 genes were commonly down-regulated (data not shown). The up-regulated genes included genes associated with signal transduction, cell proliferation, enzymatic activities, gene transcription, and transporter activity. Some known activated genes in ESCC, such as midkine (MDK); TGFA; activated leukocyte cell adhesion molecule (ALCAM); melanoma antigen, family A, 3 (MAGEA3); and melanoma antigen, family A, 4 (MAGEA4), appear on our list of up-regulated genes (4,20-22).

Validation of selected genes by semi-quantitative RT-PCR. To validate the expression data obtained by microarray analysis, we performed semi-quantitative RT-PCR experiments for a total of 38 representative genes, which were frequently overexpressed in ESCC cases (6 genes were shown in Fig. 1D). The results of RT-PCR experiments using ESCC materials were concordant with microarray data.

Identification of genes associated with lymph node metastasis. Status of lymph node metastasis at surgery is an important determinant for the prognosis of patients with ESCC. Therefore, new therapeutic strategies based on information of a biological nature from individual tumors are expected to improve survival for ESCC patients. To find genes that can be used to predict lymph node metastasis, we compared the expression profiles of 13 lymph node-positive cases with those of 6 node-negative cases, and identified 34 genes that were associated with lymph node status by a random permutation test (P<0.01). Of these, 18 genes were relatively up-regulated, and 16 were down-regulated in node-positive tumors (Table II). Supervised hierarchical clustering analyses using these identified gene sets clearly classified the individual groups according to lymph node status (Fig. 2A). To further determine the minimum number of discriminating genes giving the best separation of the two groups, we rank-ordered the above 34 genes by the magnitude of their permutation P-values, and calculated a classification score (CS) by the leave-one-out test for cross-validation using the top 5, 10, 15, 20, 25, 30, and 34 genes on the rank-ordered list (Fig. 2B), and obtained the best separation when we used the top 20 genes (10 up-regulated and 10 down-regulated genes) for score calculation (P-value <0.0015; Fig. 2C).

Evaluation of TGFA as a diagnostic marker for ESCC. To validate the possibility of applying the overexpressed genes as diagnostic protein markers for ESCC, we carried out immunohistochemical staining on tissue microarray containing tissue sections from 228 ESCC cases that underwent curative surgical resection, which were on our list of overexpressed genes (Table I), with antibody for a secretory protein (TGFA). TGFA staining was mainly observed in the cytoplasm of tumor cells but was not detected in normal esophageal epithelial cells (Figs. 3A). Of the 228 cases examined, TGFA was strongly stained in 109 (47.8%), weakly stained in 109 (47.8%) and not stained in 10 cases (4.4%). The median survival time of ESCC patients was significantly shorter in accordance with the higher expression levels of TGFA (P=0.0064 by log-rank test; Fig. 3B). We also applied univariate analysis to evaluate associations between patient prognosis and several factors, including age, gender, pT stage (tumor depth; T1 versus...
specific transmembrane or secretory proteins are considered as cancer. Among them, the genes encoding putative tumor-specific antigens (CTAs) have been recognized as a group of highly molecular targets in cancer cells that cannot be obtained by conventional diagnostic tools; thus improving the survival benefit of adjuvant treatments. However, further validation of TGFA for clinical use will be necessary, this marker may support clinicians in selecting the appropriate therapies for individual ESCC patients in advance.

We also tried to establish a predictive scoring system for lymph node metastasis with a limited number of genes by comparing expression profiles of node-positive cases with those of node-negative cases, as lymph node metastasis is a key step in tumor progression and a risk factor for poor prognosis. We identified 20 genes, a combination of which significantly distinguished node-positive from node-negative cases (P-value <0.0015; Fig. 2 and Table II). Among these genes, 10 were relatively up-regulated, and the other 10 were down-regulated in node-positive cases compared with those in node-negative cases. The former genes included key molecules that were indicated to worsen patient prognosis, such as wingless-type MMTV integration site family and member 10B (WNT10B) and cyclin T2 (CCNT2) (37,38). In logarithmically growing cells, CDK9/CCNT2 and pRB are located in a nuclear multiprotein complex likely involved in the transduction of cellular signals and regulation of cell cycle progression (38). The 20 genes could be useful in selecting patients for adjuvant chemotherapy. It was reported that clinically unsuspected metastasis to the cervical lymph nodes was present in 36% of patients with esophageal cancer, regardless of cell type (39). A diagnosis based on the minimum gene expression pattern may also have great potential in providing information about the biological nature of cancer cells that cannot be obtained by conventional diagnostic tools; thus improving the survival benefit of adjuvant treatments. However, further validation using larger sets of patients is necessary.

Among the tumor antigens identified to date, cancer-testis antigens (CTAs) have been recognized as a group of highly attractive targets for cancer vaccination (40). Although other factors, such as the in vivo immunogenicity of the protein, are also important (41), and further examination is necessary, our candidate genes include known CTAs such as MAGEA3,
MAGEA4 and the preferentially expressed antigen in melanoma (PRAIME). Further study using this expression profile should enable us to identify novel CTAs that could be a good target for immunotherapy of ESCC.

In summary, our cDNA microarray analysis combined with an LMM system revealed precise gene expression profiles of ESCC that may be associated with carcinogenesis and lymph node metastasis, yielding valuable insights into the molecular events underlying esophageal carcinogenesis. The application of the gene expression data of ESCC to the selection of candidate molecular targets using tissue microarray analysis could offer a powerful strategy for rapid identification and further evaluation of target molecules for a personalized therapy of this type of tumor.

Acknowledgements

This work was supported in part by a ‘Research for the Future’ Program Grant from the Japan Society for the Promotion of Science (#00L01402) to Y.N.

References

