Evidence accumulating in support of cancer vaccines combined with chemotherapy: A pragmatic review of past and present efforts

JOSEPH G. SINKOVICS and JOSEPH C. HORVATH

Cancer Institute, St. Joseph's Hospital; Department of Clinical Microbiology and Immunology; H.L. Moffitt Cancer Center, The University of South Florida College of Medicine, Tampa, FL, USA

Received May 15, 2006; Accepted June 19, 2006

Abstract. In the early 1970s supervised clinical trials were initiated at The University of Texas M.D. Anderson Hospital in Houston, TX, for the combination of viral oncolysate-based vaccines and contemporary chemotherapy for the treatment of patients with metastatic melanoma and sarcomas. This therapeutic approach was then generally considered to be inappropriate based on a widely held belief that the efficacy of cancer vaccines would be negated by the immunosuppressive effects of the chemotherapy. Not NCI grants, but institutional funds supported these clinical trials. These early clinical trials included in vitro tests for anti-tumor cell antibodies and cytotoxic lymphocytes both in autologous and allogeneic settings and showed that these faculties remained active even after chemotherapy. The contemporary reports of unexpectedly favorable clinical results are recited in this article. Despite these most promising results, support from federal granting agencies (the NIH/NCI) was repeatedly denied; these denials were based on the prevailing dogma that the two treatment modalities are expected to be antagonistic and not synergistic or not even additive. However, thirty years later, now in the new era of molecular medicine, a rapidly increasing number of peer-reviewed publications appear and offer convincing evidence that strongly substantiate the therapeutic value of combined cancer chemoimmunotherapy. The important provision is that the sequencing and dosing of the two major treatment modalities, the vaccination and the chemotherapy, are to be pre-tested and then the methodology is to be adhered to in the new clinical trials. New sophisticated experiments carried out in vitro and in vivo and subsequent clinical trials attest to the potential value of this combinatory approach and explain the underlying molecular mechanisms. This pragmatic review recapitulates the empirically administered earliest clinical trials, and lists and interprets, in view of their molecular immunomodulatory effects, the exemplary new clinical trials.

Contents

1. Introduction: the earliest attempts were not appreciated
2. Intricate mechanisms of interaction
3. Some ideas for prospective current trials
4. Discussion

1. Introduction: the earliest attempts were not appreciated

Background. A leading tenet forcefully expounded in the 1970s presumed antagonism between cancer chemotherapy and immunotherapy. It was surmised that the immunosuppressive effects of chemotherapy would negate all benefits of active tumor-specific immunization with cancer vaccines. Remnants of this view persist (1-3). Grant applications repeatedly submitted in the mid-1970s from the Melanoma-Sarcoma Service, Department of Medicine, The University of Texas M.D. Anderson Hospital, Houston, Texas, to the USA NIH/NCI for chemoimmunotherapy of metastatic melanomas and sarcomas were summarily (without a project site visit) rejected. These grant applications proposed contemporary chemotherapy courses to be given at 28 days intervals and immunotherapy to be administered late in the second or early in the third week postchemotherapy, when recovery of the blood count (especially that of the white blood cells) was occurring (Fig. 1). The immunotherapy consisted of autologous (preferred) or allogeneic tumor cell lysates obtained from primary or established tumor cell cultures (4,5) infected with the live PR8 influenza A virus. This attenuated virus was oncolytic in vitro to the vast majority of human tumor cell cultures. Myxovirus (influenza) and paramyxovirus (Newcastle disease) viruses were shown decades earlier to be oncolytic in ascites or solid tumors in mice and mice recovering tumor-free after dissolution of large tumor burdens resisted newly inoculated native (not virus-infected) tumor cells of the same lines that were eliminated by viral oncolysis in vivo: thus, these mice acquired postoncolytic anti-tumor immunity (6,7).

The 1970s were the times when nonspecific immunostimulation by live Corynebacterium parvum or Bacille

Correspondence to: Professor J.G. Sinkovics, Cancer Institute, St. Joseph's Hospital, 3001 West Dr. Martin Luther King Jr. Boulevard, Tampa, FL 33607-6387, USA
E-mail: sinkovi.joseph@baycare.org

Key words: chemotherapy, immunotherapy, viral oncolysate cancer vaccines, FasL - FasR autocrine growth circuits
Calmette-Guerin (BCG) vaccines were extensively tested and supported by the NCI. Accordingly, the grant proposals included BCG scarifications over the intra- or subcutaneous inoculation sites of the PR8 viral oncolysates (VO). Despite the denial of NCI support, the Surveillance Committee of M.D. Anderson Hospital allowed the commencement of these chemoimmunotherapy clinical trials, but requested that the PR8 virus be further attenuated (or even inactivated) by UV light in the final product. Thus, VO were checked by Dr Dieter Gröschel in the hospital's microbiology laboratories at the Clinical Pathology Department for bacterial contaminants and endotoxins (the limulus test) (8); and at the Section of Clinical Tumor Virology and Immunology, Department of Medicine, for remaining live tumor cells and live PR8 virus before inoculations into patients. The VO were free of live tumor cells, bacterial contaminants and endotoxins, but always contained small amounts of residual live PR8 virus (vide infra). Administration of VO was referred to as ‘tumor-specific active immunization’ but without the identification of ‘tumor-specific antigens’ in the VO preparations (9).

Clinical results. In a much abbreviated summary, chemoimmunotherapy thus administered appeared to induce better remission rates than chemotherapy alone, but this was not always, only occasionally, translated into a significantly prolonged survival. However, patients with hematogenous melanoma metastases at all sites except brain, who received VO, BCG and chemotherapy (n=11) lived 12.8 months versus 5.1 and 6.2 months survivals of patients treated with chemotherapy alone (n=19) or with chemotherapy and BCG (n=24), respectively (10,11). While early relapses occurred in both groups of patients receiving standard chemotherapy and BCG without and with VO in addition, respectively, late relapses (after the third year of observation) were reduced to zero in two years of observation (1978-1980) in those patients with melanoma whose clinically positive regional lymph node metastases were surgically removed and who received there-after treatment with VO, BCG and chemotherapy (n=0/13). In contrast, late relapses continued in the group of patients treated postoperatively with chemotherapy and BCG (n=7/17) (12).

Patients with metastatic sarcomas in complete remissions induced by adriamycin-based chemotherapy alone occasionally remained tumor-free for 3-5 years (13; Yap BS, et al, Proc 15th Ann Meet Am Soc Clin Oncol, New Orleans, LA, 20: 352, abs. 250, 1979). Patients with metastatic sarcomas of all clinical entities and all sites except brain were grouped together presuming that once sarcomas metastasized hematogenously, their prognosis was equally the worse. In this group of patients treatment with VO, BCG and chemotherapy retarded progression of disease (32% progressed in 6 months), whereas the progression rates of those patients who received chemotherapy only or chemotherapy and BCG were 72% and 53% in the same period of observation, respectively (Table I) (14-16). These patients were not 'prospectively randomized'; patients who did not yield live tumor samples for the laboratory (the Section of Clinical Tumor Virology and Immunology, Department of Medicine) for the preparation of autologous viral oncolysates were often enrolled in the control groups; patients were not stratified for sarcoma subtypes and prognostic factors; and in the pre-CT scan era subclinical residual disease could have been overlooked. For these reasons, this clinical trial was subjected to criticism and reservations, while its faultless conduct (in reference to 'individualized patient care') was recognized. However, its promising results should not be allowed to fall into oblivion.

Laboratory monitoring. In the era (late 1960s and early 1970s) when B and T lineages of lymphocytes were not clearly recognized as separate entities, the existence of NK cells was not yet imagined, perforins and granzymes were not yet discovered, and the phenomena of programmed cell death...
(apoptosis) were not yet elaborated on, at the Section of Clinical Tumor Virology and Immunology, Department of Medicine, small compact lymphocytes (much later recognized as immune T cells) were already captured in the act of attacking and killing autologous tumor cells; and large granular lymphocytes (much later recognized as NK cells) were photographed as they killed allogeneic tumor cells either by ‘nuclear clumping’ or by cytoplasmic lysis (plate of Fig. 2) (17-19). Lymphocyte-mediated cytotoxicity to tumor cells in patients who received chemotherapy, the appearance of ‘serum factors’ (antibodies) antagonizing (‘blocking’) or intensifying (‘unblocking’) the cytotoxicity of lymphocytes on tumor cells and the delayed-type skin reactions at the sites of VO inoculations (20) (administered intracutaneously without over-scarifications of BCG) indicated that the postulated immunosuppressive effects of chemotherapy were not fully operational. The sites of intra- or subcutaneous VO administrations with or without BCG overscarifications were not biopsied; thus the cellular reactions induced (granulocytes, macrophages, and T classes of lymphocytes and the as yet undiscovered dendritic cells or cytokines-chemokines) could only be surmised. Further, some chemotherapeuticals (cytine arabinoside) eliminated the cytokines-chemokines) could only be surmised. Further, some chemotherapeuticals (cytine arabinoside) eliminated the cytokines-chemokines) could only be surmised. Further, some chemotherapeuticals (cytine arabinoside) eliminated the cytokines-chemokines) could only be surmised. Further, some chemotherapeuticals (cytine arabinoside) eliminated the cytokines-chemokines) could only be surmised. Further, some chemotherapeuticals (cytine arabinoside) eliminated the cytokines-chemokines) could only be surmised. Further, some chemotherapeuticals (cytine arabinoside) eliminated the cytokines-chemokines) could only be surmised. Further, some chemotherapeuticals (cytine arabinoside) eliminated the cytokines-chemokines) could only be surmised. Further, some chemotherapeuticals (cytine arabinoside) eliminated the cytokines-chemokines) could only be surmised. Further, some chemotherapeuticals (cytine arabinoside) eliminated the cytokines-chemokines) could only be surmised. Further, some chemotherapeuticals (cytine arabinoside) eliminated the cytokines-chemokines) could only be surmised. Further, some chemotherapeuticals (cytine arabinoside) eliminated the cytokines-chemokines) could only be surmised. Further, some chemotherapeuticals (cytine arabinoside) eliminated the cytokines-chemokines) could only be surmised. Further, some chemotherapeuticals (cytine arabinoside) eliminated the cytotoxicity of small compact lymphocytes on autologous tumor cells (21). The postchemotherapy ‘rebound phenomenon’ (22) of leukocyte counts argued for short-lasting and reversible immunosuppressive effects of chemotherapy.

These earliest attempts at combining chemotherapy with ‘tumor-specific’ vaccination and monitoring the results clinically and in vitro, indeed were not appreciated in their time; nevertheless they should be remembered in the era of molecular immunology as justifications emerge for this concept. The complex mechanisms of these interactions were recently reviewed (23,24); this present article elaborates further on evidence-based arguments in favor of chemotherapy–combined anti-tumor vaccination.

2. Intricate mechanisms of interaction

Chemotherapy-resistant tumor cells. Chemotherapy-resistant tumor cells exposed to chemotherapeutics either undergo a protracted dying process or remain alive and respond with a variety of biological changes. Those tumor cells (melanoma and kidney carcinoma) that withheld MHC expression will now under the effect of 5-aza-2 deoxycytidine re-express MHC (25). Tumor cells presenting antigenic peptides in the grooves of their MHC class I do this without the expression of co-stimulatory molecules B7-1, 2 and the antigens thus presented would elicit a tolerogenic rather than an immunogenic response in the host; under the effect of melphalan or mitomycin C, re-expression of the costimulatory molecules will occur and the anti-tumor response becomes rather immunogenic (Th1-like) than tolerogenic (23).

Treatment of breast cancer cells with paclitaxel induces a dendritic cell-mediated immune Th1 cell response (26). In this case dendritic cell (DC) maturation and antigen-presenting activity is induced by the stimulation of innate Toll receptors of the DC (27); paclitaxel interacts with lipopolysaccharide-recognizing ancient receptors. Patients with stages II-III pancreatic carcinoma are treated with pancreaticoduodenectomy, thus reducing their tumor burden (cytoreductive surgery). These patients received the first dose an allogeneic GM-CSF-secreting pancreatic cancer cell vaccine immediately postoperatively; thereafter for 6 months a combined regimen of radiation and chemotherapy was given. At this point tumor-free patients failed to show the presence of mesothelin-reactive immune T cells; however, re-administration of the vaccine induced both delayed hypersensitivity skin reactions to autologous tumor cell lysates and mobilization of mesothelin-reactive CD8+ immune T cells in some of the patients (23,28). The interpretation of this clinical trial is that vaccination could overcome a chemotherapy-induced suppression of anti-tumor reactivity in patients with minimal residual tumor burden.

Table I. Chemoimmunotherapy of patients with sarcomas at the Department of Medicine, M.D. Anderson Hospital, 1974-6.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Date of evaluation</th>
<th>Patients</th>
<th>Complete remission</th>
<th>Partial remission</th>
<th>Progression</th>
<th>% Progressors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ChemoRx</td>
<td>Oct ‘76</td>
<td>48</td>
<td>10</td>
<td>6</td>
<td>32</td>
<td>66</td>
</tr>
<tr>
<td></td>
<td>Feb ‘77</td>
<td>49</td>
<td>10</td>
<td>3</td>
<td>36 (17)</td>
<td>72</td>
</tr>
<tr>
<td>ChemoRx</td>
<td>Oct ‘76</td>
<td>10</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Feb ‘77</td>
<td>19</td>
<td>3</td>
<td>6</td>
<td>10 (4)</td>
<td>53</td>
</tr>
<tr>
<td>BCG</td>
<td>Oct ‘76</td>
<td>14</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Feb‘77</td>
<td>19</td>
<td>4</td>
<td>9</td>
<td>6 (3)</td>
<td>32</td>
</tr>
</tbody>
</table>

4 In treatment more than 6 months. Rendered NED surgically 15, 3, 3. ChemoRx: vincristine, cyclophosphamide, adriamycin/actinomycin D, dimethyl triazeno imidazole carboxamide, days 1-5 Q28 days. ImmunoRx: BCG (Chicago) and sarcoma viral oncolysates, days 17 and 24. Reproduction of Table II from the Chicago Symposium, February 24-25, 1977 sponsored by the University of Illinois at the Medical Center and the Illinois Cancer Council, Chicago, IL; from The Franklin Institute Press, Philadelphia, PA, with permission. Library of Congress Catalog Card #77-777-7. Patients with metastatic sarcomas were treated and evaluated at the Melanoma-Sarcoma Service, Department of Medicine, The University of Texas M.D. Anderson Hospital, Houston, TX, by fellows and resident physicians supervised by staff physicians Drs Carl Plager and Joseph Sinkovics (16).
Some tumor cells acquire immunoresistance by the expression of Fas ligand (CD95L) and kill Fas receptor-positive immune T cells of the host (29). Paradoxically, some melanoma cells expropriate the FasL ➝ FasR system for an autocrine growth circuit (30). Fas-ligand-resistant melanoma cells were rendered in vitro susceptible to FasL- and granzyme-induced apoptosis by pretreatment with 5-fluorouracil or dacarbazine (31). Vice versa, FasL-sensitive sarcoma cells are also susceptible to chemotherapy (32).

Tumor cells undergoing genotoxic stress and stalled DNA replication express ligands that are members of the MIC (MHC class I chain-related molecules) and RAET1 families. The human retinoic acid early transcripts, the RAET1 family, consists of the ULBP-related cluster of genes and transcripts from chromosome 6p24.2-q25.3 and it is referred to as ULBPs, the UL16 glycoproteins of human cytomegalovirus. The ligands RAET1E/ULBP4 are recognized by the NK cell receptor NKG2D, the major 'natural cytotoxicity receptor'. These receptors are also expressed by subsets of γ/δ NKT cells and CD8+ activated immune αβ T cells. While these NK and immune T cells kill stressed tumor cells, this type of lymphocyte-mediated cytotoxicity is counteracted by soluble MICA and transforming growth factor-β released from the cell or by IFN-γ which downregulates NKG2D receptor expression in NK cells (33,34).

Chemotherapy-sensitive tumor cells. Chemotherapy-sensitive tumor cells die apoptotic or autophagic deaths. Mature DC express tumor cell antigens either by intracellularly processing them after phagocytizing of, or accomplishing fusion with, dead tumor cells, or by extrinsically loading tumor cell-derived free peptides into their MHC for presentation to T or to certain subclasses of natural killer (NK) cells through the immunological synapse. However, effective presentation of tumor antigens to reactive lymphocytes is very complicated. Heat-shock proteins are molecular chaperons that transfer the antigens from tumor cell lysates to DC (35). Mature proteins, peptides and incomplete ribosomal products are processed differently for the MHC class I pathway. The primary signals coming from immature DC are ‘non-priming’ in order to maintain self-tolerance. These signals are so overwhelming that they can block lymphocyte-mediated cytotoxicity to cells expressing a viral (influenza virus HA) antigen (36). In this system co-production of IL-12 or the anti-CD40 antibody can break the tolerance and induce cytotoxic effector reactions of immune CD8+ lymphocytes. Mesothelioma cells transfected to
express the HA antigen also induce a blunted cytotoxic T cell-(CTL-) mediated reaction (37).

Chemotherapy (or radiofrequency-induced tumor ablation like in liver metastases) providing large numbers of apoptotic tumor cells and molecular mediators inducing DC maturation (GM-CSF, type I interferons, IL-12) ‘cranks the immunology engine’ and acts as an in vivo (in the patient) tumor vaccine (38). Indeed, IFN-α induces DC maturation and B7.2 expression (39). IFN-α enhanced the efficacy of a GM-CSF-secreting cancer vaccine (B16.GM) in mice (40).

When tumor cells express carcinoembryonic antigens, the host responds with a blunted immune reaction that suppresses the expression of these target antigens in the tumor cells without cell kill; thus vaccines aimed at inducing immune reactions against CEA may fail. However, in colon and breast carcinoma cells, 5-flurouracil induces the re-expression of CEA and renders these tumor cells susceptible to HLA-A*02:01-restricted CEA peptide-specific cytotoxic immune T cells (41). The interpretation is that chemotherapy and anti-CEA vaccinations act synergistically in this system.

In human breast cancer, the monoclonal antibody trastuzumab very significantly improves the results of chemotherapy either in the adjuvant setting or when applied against metastatic disease and its mechanisms of action include NK cell activation through the ADCC pathway. The amplified or mutated HER2/neu oncogene when expressed in breast cancer cells is immunogenic in its host; indeed there are efforts to intensify anti-HER2/neu cell- and antibody-mediated immune reactions of patients by vaccinations against the oncoenergic product proteins. While trastuzumab does, HER2/neu peptide epitope-generated T cells fail to, attack HER2/neu tumor cells (42). Whereas paclitaxel treatment of patients with breast cancer induces immune T cells that infiltrate the tumor and contribute to the induction of complete remissions (26). The LPS-mimetic activity of paclitaxel activates innate immune reactions (26,27,43), that is innate reactions are translated by DC into adaptive immunity resulting in effective immune T cell generation.

Murine models provide some guidance toward human clinical trials. In rats, tolerance to HER2/neu can be broken by vaccination against the oncoenergic protein and the vaccine synergizes with chemotherapy. The target of a GM-CSF-secreting anti-HER2/neu vaccine is the epitope RNEU \textsubscript{420-429} within the protein antigen. The vaccine induces both antibody and immune CD8^+ T cell responses against this target. In contrast, in MMTV-neu-transgenic mice tolerance to HER2/neu prevails despite vaccination. However, treatment of these mice with low dose cyclophosphamide or paclitaxel 1 day before vaccination resulted in a vigorous immune reaction to the oncoenergic protein. Low dose doxorubicin given 7 days later further intensified this immune response; it was shown that doxorubicin given 3-5 days before vaccination induces the generation of specific immune T cells. High dose chemotherapy with these agents or different time schedules of vaccine and chemotherapy administrations or certain other chemotherapeutic agents (gemcitabine) negated the efficacy of the vaccine (44-47). Complete remissions and cures occurred only in those mice, which mobilized RNEU \textsubscript{420-429} CD8^+ immune T cells (45-47). In these systems the contribution of cyclophosphamide is the one best understood; it abrogates T\textsubscript{REG} activity (vide infra), induces type I interferons and promotes Th1-type immunity and the generation of CD44^+ T memory cells (48). In other murine tumor (colon carcinoma) models, cyclophosphamide excelled to be the most effective chemotherapeutical in promoting the efficacy of the GM-CSF-secreting CT26 vaccine (49). It is a good question how much better the results of past clinical trials such as the one with colon cancer vaccine in stages II and III of the disease (50) would have been, if judicious coadministration of chemotherapeutics were included.

Prostate cancer vaccines in clinical trials consist of re-combinant vaccinia virus expressing prostate-specific antigen gene rV-PSA and the co-stimulatory gene rV-B7.1; and re-combinant fowl pox virus containing the PSA gene (IF-PSA). These vaccines are co-administered with granulocyte macrophage colony-stimulating factor. The vaccines generate PSA-specific T cell response. Patients progressing while vaccinated received docetaxel chemotherapy and experienced 6.1 months progression-free survival; not pre-vaccinated historical control patients with progressive disease receiving docetaxel experienced 3.7 months progression-free survival. Immune T cell responses were not blunted by docetaxel administration (51).

The antigenicity of mutated oncoenergines and fusion oncoproteins. Some proto-oncoenergines/oncoenergines (survivin, telomerase) (52,53) that also elicit a blunted T cell-mediated immune reaction in the tumor-bearing host are incorporated in vaccines (adenoviral vectors, other oncolytic viruses) (7), in order to intensify the naturally weak immune responses of the host; indeed, co-administration of selected and properly timed chemotherapeutical agents are expected to yield evidence for enhancement of the efficacy both of these vaccines and of oncolytic viruses (7). The tumor suppressor gene p53, the ‘guardian of the genome’, is frequently mutated or neutralized by fusion with cellular (MDM) or DNA oncogenic viral (SV40 large T antigen, papillomaviral E6, adenoviral E1B, Epstein-Barr viral EBNA-5) oncoproteins, or is eliminated by ubiquitination in proteasomes in tumor cells. Tumor cells without functional wild-type p53 escape apoptotic death. While the mutated p53 gains longevity (prolonged half-life of its protein product in contrast of the short half-life of the wild-type gene product protein), it induces the generation of anti-p53-reactive immune T cells that can kill tumor cells harboring mutated p53 proteins; however, in the tumor-bearing patients this reaction is blunted.

Patients with small cell undifferentiated lung cancer (SCLC) were vaccinated at the Moffitt Cancer Center in Tampa, FL with autologous DC transduced by an adenoviral vector (Ad-p53) with full-length wild-type p53 genome. The disease progressed in most of the vaccinated patients and stabilized in a few patients; clinical tumor response to the vaccine occurred only in one patient. Most vaccinated patients generated p53 protein-specific T cells and anti-adenoviral antibodies; these immune reactions were antagonized by immature myeloid cells. Upon postvaccination, standard second line chemotherapy (cis- or carboplatin, etoposide, irinotecan) induced an unexpectedly high (62%) clinically documented tumor response (CR/PR) in those patients who previously were deemed to be chemotherapy- (platinol-) resistant (54). In
another clinical trial, those patients with SCLC who developed immune reactions to the universal tumor antigen CYP1B1 exhibited an unexpectedly high response to second line chemotherapy (55). In another pioneering Canadian clinical trial, patients (n=33) with early stages of lung cancer of various histological subtypes received postoperatively high dose methotrexate with leucovorin rescue; or allogeneic lung cancer-derived solubilized antigens in Freund's adjuvant; or these two modalities of treatment together. Patients who received methotrexate performed better than those who received the vaccine. However, patients receiving ‘immuno-chemotherapy’ remained free of relapses in the highest numbers and for the longest time (56).

Autologous DC pulsed with glioblastoma multiforme-derived peptides induced immune T cells (‘recent thymic emigrants’) that infiltrated residual tumors. Vaccinated patients upon receiving standard chemotherapy (temozolomide, irinotecan, imatinib mesylate, thalidomide, etoposide, procarbazine, vincristine and nitrosourea) frequently responded with unusually durable and >50% tumor size regressions (57,58).

The extraordinary influence of the stroma. Eva Klein, the editor of Seminars in Cancer Biology, recognized the extraordinary influence of the stroma in the tumor's microenvironment in promoting or abrogating tumor growth (59,60). There is a discrepancy between the high susceptibility of tumor cells exiled into xenografts (or anoikis) to chemical or biological agents, which, when tested in the tumor's natural host, fail to eradicate the tumor (61). In addition to anti-endothelial cell monoclonal antibodies, vaccines and small molecular inhibitors of neoangiogenesis, indeed chemotherapeutic agents may be found that suppress many other tumor-promoting activities of the stroma and thus enhance the efficacy of co-administered tumor vaccines.

Immunosuppressive evasive maneuvers. Immunosuppressive evasive maneuvers are shared between the fetus and especially its placenta and malignant tumors (19). Regulatory T cells (T\textsubscript{REG}), the physiological guardians against autoimmunity and the supervisors of tolerance maintenance toward “self”, protect both the fetus against the attack of maternal T cells on paternal antigens epitopes expressed by fetal cells and the tumor against immune T cells of its host.

In the ascites of patients with ovarian carcinoma T\textsubscript{REG} cells are CD4+CD25+(IL-2R \alpha chain)FOXP3+CCR4+(CCL22R) T cells that undergo clonal expansion in response to IL-2 and migrate in response to chemokine CCL22. Tumor cells and tumor-infiltrating macrophages overexpress CCL22 mRNA. Epidermal growth factor receptor (EGF-R) HER2/new tumors attract most T\textsubscript{REG}. In the tumor's environment T\textsubscript{REG} eliminate CTL mobilized by the host against its tumor. The monoclonal antibody denileukin diftitox aimed at the CD25+ malignant T cells may (or may not) be able to eliminate T\textsubscript{REG} (62,63). The case history of a patient with a HER2/new ovarian carcinoma was presented at the 5th International Conference on Ovarian Cancer in Houston, TX (Sinkovics JG, et al., abs. 17, 2004). The chemotherapy-resistant tumor disseminated in her abdomen at which point she received adoptive immunotherapy intravenously and repeatedly with lymphocytes extracted from her ascites and expanded in vitro; large granular lymphocytes (not characterized further but believed to be NK cells) dominated the infused cell population. She received 5-10 million units of IL-2 subcutaneously and developed severe psychosis and refused further therapy with IL-2. She however entered remission and responded further to Doxil to which she displayed resistance prior to adoptive immunotherapy. The interpretation was that IL-2 might also have promoted the expansion of T\textsubscript{REG} but that adoptively administered NK cells may be resistant to elimination by T\textsubscript{REG}.

The tryptophan catalytic enzyme indolamine-2,3 dioxygenase (IDO) renders T cell clonal expansions in response to an antigen ineffective: these tryptophan-dependent T cells either become tolerogenic or die apoptotic deaths. Both the fetal placenta and growing tumors overexpress IDO (64). The IDO inhibitor 1-methyl-tryptophan reverses the process and restores reactivity of expanding T cell clones with resulting abotion in the case of the fetus, or rejection in the case of the tumor. Against MMTV\textsubscript{neu} murine breast carcinomas, the combination of 1-methyl-tryptophan and chemotherapy acted synergistically promoting immune T cell-mediated anti-tumor reactions (65).

In a plenary lecture given on chemoimmunotherapy in 1978 at the 12th International Cancer Congress in Buenos Aires, Argentina, an experiment was presented in which mice inoculated by fetal cells allowed the unusually rapid growth of a lymphoma; this tumor was moderately sensitive to cyclophosphamide. However, its rapidly growing variant in fetal cell-pretreated mice showed increased susceptibility to low dose cyclophosphamide. The interpretation was offered that carcinoembryonic antigens released by the fetal cells induced clonal expansion of suppressor cells akin to the fetomaternal setting and in the tumor-bearing host and that these clones were eradicated by cyclophosphamide allowing immune reactivities to be mobilized unopposed (11). At the International Meeting on Cancer Vaccines held in Rome, Italy, in 2004, a session was devoted to the ‘learning how to overcome the suppressor activity of regulatory T cells’ (66). Low doses of cyclophosphamide given prior to tumor vaccine administration for T cell ‘priming’ abrogated immune tolerance by eliminating T\textsubscript{REG} (23).

When it comes to the balance of tumor-enhancing antibodies versus CTL, recently gemcitabine was shown to suppress antibody production thus allowing unopposed flow of cell-mediated immunity (44). Long time ago, cytokine arabinoside was shown to suppress ‘blocking factors’ in tumor-bearing patients (antibodies antagonizing cytotoxic immune T cells by covering epitopes to be targeted by T cells), thus allowing CTL to exert their effect in in vitro assays (21).

3. Some ideas for prospective current trials

Melanoma. At the authors' Institution, patients with melanoma of adverse prognosis in stages I, II, and III of the disease (in this latter stage: patients with regional lymph node metastases who refused or could not tolerate the postoperative administration of the Schering IFN-α2b protocol) received the Emory University (Dr Wm. Cassel's) Newcastle disease virus (NDV) oncolysate (VO) vaccine (67,68). In the past fourteen years, 53 patients with melanoma were vaccinated...
with NDV oncolysates. Not only patients who were surgically rendered tumor-free, but also patients in early postoperative relapse were accepted for vaccination. Patients experiencing early relapse often failed to enter remissions while receiving the vaccine, but some of these patients upon biochemotherapy with or without adoptive lymphocyte therapy added (19), showed unexpectedly long duration of their partial responses or stabilizations of their metastatic disease. A tabulated account of these patients is now being prepared. A recently treated patient is selected for presentation here.

This exemplary patient is JM, a 50 years old Caucasian woman with ulcerating melanoma on her left cheek. A dermatologist performed a ‘shave biopsy’ on January 2003 (a procedure these authors are strongly opposed to) and thus diagnosed a malignant melanoma Clark level III and Breslow thickness ≥0.9 mm. A plastic surgeon performed a wide excision on March 11, 2003 and found that the lesion penetrated vertically downward to Clark level V. However, sentinel node biopsies revealed 5 negative nodes. After surgical removal of all gross disease, the patient received allogeneic viral (NDV) oncolysate vaccine with IFN-α2b; the vaccine was given subcutaneously on a day in midweek and 5 million units of interferon (IFN-α2b, Intron, Schering) were given subcutaneously for five days from Monday to Friday on that week. The patient received 16 such vaccinations from April 28, 2003 to April 16, 2004. She remained free of locoregional relapse, but in April 2004 she was found with soft freely rolling non-tender small marble-sized bilateral axillary lymph nodes with a low SUV uptake of 1.8 on PET scan, thus interpreted as ‘reactive lymph nodes’. Soon thereafter CT and PET scans revealed retroperitoneal lymph nodes situated in between the inferior vena cava and the aorta. The patient declined biopsy and biochemotherapy. By August 2004 the lymph nodes increased in size and intensified their SUV uptake on PET scan, while the axillary nodes did not stain anymore. CT and NMR images of the thorax and brain were negative, respectively. Then the patient accepted and received the M.D. Anderson Hospital biochemotherapy regimen consisting of intravenous vinblastine, cisplatin, dacarbazine and IL-2; since she received interferon while she was vaccinated, interferon was left out of the protocol. She received 3 courses of biochemotherapy in October, November and December 2004 and was re-staged by CT/PET scans in December 2004 after three courses of biochemotherapy.
She received biochemotherapy course 4 in January 2005, but could not go through course 5 in February 2005 due to IL-2 toxicity, which was reversible after discontinuation of the protocol. Off treatment, she remains in complete remission by CT/PET scan as recently as February 2006; next scans are due in mid-2006. Her complete remission ensuing promptly and remaining durable can be attributed to the additive effect of the melanoma vaccine and subsequent chemotherapy.

Patients treated with NDV oncolysate vaccines at Emory University in the last three decades for grossly positive, but surgically resected regional lymph node metastases, show an unusually long tumor-free survival (67). However, relapsed patients in this cohort should be offered from single agent (DTIC = dacarbazine) to combination chemotherapy; the same principle should be applied in cases of relapse after the receipt of the Canvaxin (Morton) or Melacin (Mitchell) or other melanoma vaccines.

Viral oncolysate cancer vaccines are not widely recognized because they were not tested in prospectively randomized clinical trials and have not been fitted into the era of molecular immunology. The original human VO vaccine developed in the 1970s at M.D. Anderson Hospital (5,15) utilized the attenuated PR8 influenza A virus for in vitro oncolysis; despite UV-irradiation, live virus always remained in the end product oncolysates (Horvath JC, et al, Proc 86th Annual Meeting Am Assoc Cancer Res, Toronto, Canada, 36: 439, abs. 2619, 1995). This virus was highly oncolytic in vitro to a variety of human tumor cells (melanoma, sarcoma, kidney and ovarian carcinoma) (Fig. 4); tumor cell deaths occurred either by ‘nuclear clumping’ or by cytoplasmic disintegration (not recognized in the 1970s to be apoptosis or autophagy). However, the extraordinary variability of the influenza viral genome (its propensity to recombine between different viral strains encountering one another in the same host) (Fig. 5) (69), in contrast to the stability of the NDV genome; and the most promising results reported from Emory University, Atlanta, GA (67), commanded a switch from influenza to NDV for oncolysate preparation.

Vesicular stomatitis virus (VSV) was another early consideration for the preparation of viral oncolysates, because of its propensity to fuse tumor cells and thus escape virus neutralizing antibodies before the disintegration of tumor cell syncytia (Fig. 6) (70,71). These phenomena are now being rediscovered and are superbly elaborated on as a form of non-apoptotic ‘bio-energetic tumor cell death’ (72-74). ‘Syncytiosomes’ evoke first an innate immune reaction in activating cytotoxic macrophages and NK cells and present (‘load’) tumor antigens to DC, which then elicit adaptive immune reactions by mobilizing cytotoxic immune T cells. In Ottawa, Canada and in Miami, FL, VSV has become a prime candidate oncolytic virus or anti-tumor VO vaccine or a vector for gene therapy (reviewed in detail) (7).

However, the combination of oncolytic viruses with chemotherapy, attractive as it seems, may impose unexpected risks. If an attenuated virus is genetically incapacitated to invade its host and its growth is limited to tumor tissue (and NDV is
such a candidate in the human host), such a clinical trial could possibly be initiated. However, if the oncolytic virus is apathogenic because of immunological control of the host over it, immunosuppressive episodes consequential to chemotherapy may allow persistence of non-neutralized virus in the host, or restore viral virulence. Monoclonal antibodies, lympho-

Figure 5. Influenza A virus recombinations as depicted in the senior author's monograph in 1955 (69). A, The eclipse phenomenon and complete infectious, and incomplete non-infectious virus particle formation. B, 'Genotypenvermischung': genetic recombination of two different influenza A virus particles co-infecting the same cell. C, 'Phenotypen-vermischung': phenotype exchange between two influenza A virus particles co-infecting the same cell (69).

Figure 6. A, Vesicular stomatitis virus (VSV) infecting mouse embryo cells: cytotoxicity by prompt formation of plaques. B and C, In mouse leukemia virus-harboring transformed mouse embryo cell cultures, which are defective in interferon production and resistant to exogenous interferon (crude preparation of IFN from NDV-infected mouse brain made in the 1960s), instead of prompt induction of plaques, syncytia are formed by the fusion of infected cells, which persist. D, Syncytia disintegrate with 'oncolysis' after several days. Original microphotographs preserved from the 1960s (70,71).
or cytokines and small molecular enzyme (kinase) inhibitors targeting oncoproteins are prime candidates for combination with virotherapy.

At the authors' Institution NDV oncolysates were administered either with subcutaneous low dose IFN-α2b, or IL-2 or GM-CSF. Recent controversies concerning IL-2 administration in these settings (75,76), suggest that the IL-2 arm be suspended (even though no harmful effects were as yet noted). One must presume that IL-2 may mobilize not only immune T and NK but also TREG cells. In view of this notion, the vaccine may be administered with low dose cyclophosphamide. However, in a pilot clinical trial at the authors' Institution (unpublished data) in the era when antiemetic drugs were not yet readily available, patients refused to continue taking orally cyclophosphamide prior to vaccinations due to its nauseating side effects. Further, during an open discussion at the 19th Conference of the International Society for Biotherapy of Cancer in 2004 in San Francisco, in answering a question from the senior author, Dr Don Morton stated that his melanoma vaccine, when co-administered with cyclophosphamide, did not show increased efficacy.

As to IFN-α and GM-CSF, there is cooperation between GM-CSF-secreting vaccines and IFN-α (39,40) as GM-CSF recruits and induces maturation of DC. IFN-α breaks 'tolerance to self', and while it may induce autoimmune complications, in patients with melanoma it also induces vitiligo (77). Building on the fact that chemotherapeutics induce apoptotic or autophagic deaths of tumor cells, at the authors' Institution considerations are given to a clinical trial in which patients with cutaneous-subcutaneous metastatic tumors (melanoma, kidney carcinoma) would be treated with direct intratumoral injections of cytotoxic agents (thioTEPA, vincristine/vinblastine, dacarbazine, cisplatin, oncolytic virus) and the site of inoculation would be circum-infiltrated with GM-CSF, the expectation being that mature DC thus attracted to the site would upload and or intrinsically process tumor antigens for cross-presentation to T cells. In order to expand reactive T cell clones, the patients would receive subcutaneous injections of IL-2 in the range of 5 million units daily for 10 days (78). The procedure would be repeated at several tumor sites (if available). The inoculated sites would be fine needle-aspirated to analyze the composition of the cellular reaction thus mobilized. If an anti-tumor immune reaction could thus be induced loco-regionally, it may expand to exert systemic efficacy.

Glioblastoma. At the authors’ Institution, a chemoimmunotherapy protocol for glioblastoma multiforme (GMF) has been formulated but not yet initiated ([79]; Sinkovics JG, et al, Proc 10th World Congress Advances Oncology, Crete, Greece, Int J Mol Med 16 (Suppl): 62, abs. 331, 2005). GMF cells are susceptible in vitro to oncolysis by NDV and lovastatin intensifies this effect (Horvath JC, manuscript in preparation). Patients with GMF would be vaccinated postoperatively with autologous NDV oncolysate; the efficacy of NDV oncolysate therapy in this tumor has been reported (80). Radiotherapy to the brain and temozolomide will be accepted as standard therapy. Either TIL or LAK cells would be collected from the vaccinated patients and adoptive immune lymphocyte therapy would be given with expanded clones of these lymphocyte populations either intravenously or directly into the tumor bed through an Ommaya reservoir. It should be ascertained that the lymphocyte population to be infused contains or is cloned for CTL reactive to autologous GMF cells in vitro. Adoptive immune lymphocyte therapy for GMF (79) should be given with low dose subcutaneous IL-2 administration (5 million IU daily for 10 days).

However, in adoptive immunotherapy, the resident lymphoid cell populations of the recipient antagonize the infused lymphocytes and greatly reduce their efficacy. This set back may be avoided by the depletion of the resident lymphocyte population before the infusion of immune lymphocytes (tumor-infiltrating lymphocytes, TIL, or lymphokine-activated killer LAK cells). Very effective depletion of the resident lymphocyte population can be achieved by the administration of fludara and/or cyclophosphamide (81,82).

Unfortunately, these chemotherapeutics do not exert strong anti-tumor effects in cases of melanoma or glioblastoma, while their immunosuppressive side effects may invite life-threatening infectious complications. In order to avoid these complications, the authors’ Institutions would have utilized temozolomide for the depletion of the patient’s resident lymphocyte population before the infusion of the autologous CTL clones. Due to financial considerations (lack of financial support and denial of reimbursement for NDV oncolysate vaccines and/or immune lymphocyte adoptive therapy by the health maintenance organizations, the HMOs), the authors’ cancer immunotherapy laboratory, one of the last bastions of effective but ‘old-fashioned’ cancer immunotherapy, at the Cancer Institute, St. Joseph’s Hospital, Tampa, FL, ceases its services as of June 2006 and this new glioblastoma protocol remains in suspense.

4. Discussion

Human tumor vaccines. This modality of treatment received some adverse comments in the recent literature from those who used specific peptide antigens as tumor vaccines, but favor adoptive lymphocyte therapy (83) and from those who never used any tumor vaccines (84). Indeed, tumor vaccines used with therapeutic intentions against established large tumor burdens practically always fail to induce immune reactions complex and strong enough for the rejection of such tumors. Some good results prematurely reported in Germany with DC vaccines (kidney carcinoma) had to be withdrawn. However, when the tumor burden is surgically reduced and the vaccine works against micrometastases, chances are much better for a clinical response. In case of chemotherapy, the burden of sensitive tumors is reduced; however chemotherapy-resistant tumors show unexpectedly good response to a second course of the same chemotherapy given after tumor-specific vaccination.

The empire strikes back. In the clinical setting of postoperative vaccination aimed at the eradication of micrometastases, tumor measurements to document the response are seldom possible. Here, the primary tumor already switched to the production of neoangiogenesis inhibitors (angiostatins, endostatin) in order to suppress its metastases, which are in the early stages of neoangiogenesis induction by VEGF or basic fibroblast growth factor (bFGF) production, either within the...
young tumor or in its microenvironment (85). The response is read years later by statistical comparisons of stratified, prospectively randomized vaccinated and non-vaccinated patients. In these cases, the combination of tumor vaccines (including viral oncolysates or oncolytic viruses) with targeted molecular therapy for the suppression of oncocenic and neoangiogenesis pathways in the occult metastases left behind after the removal of the established large primary tumor(s) offers itself for new clinical trials. Indeed, IFN-α should be considered in these combinations, if for no other reason than its suppressive effect on the bFGF/Int neoangiogenesis induction system (86).

For vaccinations against metastatic tumors, the combination of tumor vaccines with chemotherapeutics appear to be obligatory in view of the data recently generated (87) and in a great part but not completely reviewed in this report. Here, the exact measurement of tumor sizes and its comparison between groups of differently treated patients is possible and provides evidence-supported results.

The mechanisms by which a tumor cell defends itself against its eradication are almost inexhaustible. One of the most ostentatious displays of such activity is the conversion of the Fasl-FasR death domain pathway into an experimentally proven autocrine-paracrine growth circuit discovered in the authors’ laboratory in human melanoma cells and probably based (experimentally not yet proven) on a newly formed ‘fusion oncprotein’ receptor constructed by the two broken and thereafter mis-united chromosomes that normally encode the FasR and the granulocyte colony stimulating factor receptor (G-CSF-R). Upon capturing FasL by the extracellular FasR, the pathway conducted by the intracellular G-CSF-R induces cell mitoses (29,30; Horvath JC, et al., Proc 89th Annual Meeting American Association Cancer Research, New Orleans, LA, 39: 584, abs. 3971, 1998). While neuroblastoma cells provide evidence-supported results.

The mechanisms by which a tumor cell defends itself against its eradication are almost inexhaustible. One of the most ostentatious displays of such activity is the conversion of the Fasl-FasR death domain pathway into an experimentally proven autocrine-paracrine growth circuit discovered in the authors’ laboratory in human melanoma cells and probably based (experimentally not yet proven) on a newly formed ‘fusion oncprotein’ receptor constructed by the two broken and thereafter mis-united chromosomes that normally encode the FasR and the granulocyte colony stimulating factor receptor (G-CSF-R). Upon capturing FasL by the extracellular FasR, the pathway conducted by the intracellular G-CSF-R induces cell mitoses (29,30; Horvath JC, et al., Proc 89th Annual Meeting American Association Cancer Research, New Orleans, LA, 39: 584, abs. 3971, 1998). While neuroblastoma cells utilize tumor necrosis factor for an autocrine-paracrine growth loop (88), not only melanoma cells, but also glioblastoma cells proopriated the Fasl-FasR pathway for mitosis induction diverting its physiological role in apoptotic cell death into a cell growth circuit (89). In the era of molecular medicine, the door that had been closed so long for ‘no entrance’, now may allow admission (90).

Acknowledgments

The senior author is grateful for the support and supervision of his work at The University of Texas M.D. Anderson Hospital from 1959-1979, to Heads of the Department of Medicine, Drs C.D. Howe and C.C. Shullenberger; to staff physician medical oncologists Drs Carl Plager and Nicholas Papadopoulos; to the fellows and resident physicians assigned to the Melanoma Sarcoma Service, Department of Medicine for meticulous laboratory work; their names are listed in the cited publications in this article and elsewhere in the literature. The clinical and laboratory works carried out at The University of Texas M.D. Anderson Hospital in the 1970s by the senior author and cited in this report were supported by applied for, reviewed and Surveillance Committee-approved grants from the Kelsey-Leary Foundation, the Barnhardt Fund, the Dr C.D. Howe Fund, the American Cancer Society Institutional Grant, the Don & Sybill Harrington Foundation and the Baker & Taylor Drilling Company, both of Amarillo, TX; sincere gratitude is expressed herein for this support. The authors express their gratitude to their outstanding collaborators at St. Joseph’s Hospital’s Cancer Institute’s Cancer Research Laboratory: Dr Mariana Szabo-Szabari, Dr Andrea Horak, technicians Pamela Brown, Alison Knapp, Toon Kham, Michael Sorace and Vivian Vega; and to board-certified oncology nurses Cynthia Crumpton, RN and Mary Pritchard, RN for exemplary and individualized patient care.

References

