Inhibition of Stat3 activation and tumor growth suppression of non-small cell lung cancer by G-quartet oligonucleotides

PRIYA WEERASINGHE1, GABRIELA E. GARCIA1, QIQING ZHU1, PING YUAN3, LILI FENG1, LI MAO3 and NAIJIE JING1,2

1Department of Medicine, and 2Dan Duncan Cancer Center, Baylor College of Medicine; 3Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA

Received February 20, 2007; Accepted April 12, 2007

Abstract. Lung cancer is the leading cause of cancer mortality in the United States. Despite advances made over the past decades, the overall survival of patients with lung cancer remains dismal. Here we report novel G-quartet oligodeoxynucleotides (GQ-ODN) that were designed to selectively target signal transducer and activator of transcription 3 (Stat3), in the treatment of human non-small cell lung cancer (NSCLC). The objective of this study was to evaluate the effects of two novel GQ-ODN STAT3 inhibitors, T40214 and T40231, on NSCLC bearing nude mice. NSCLC bearing nude mice were assigned to 5 groups, which were treated by vehicle, control ODN, T40214, T40231, and Paclitaxel, respectively. Tumors were measured, isolated and analyzed using Western blotting, immuno-histochemistry, RPA and TUNEL. Results show that GQ-ODN T40214 and T40231 significantly suppress the growth of NSCLC tumors in nude mice by selectively inhibiting the activation of Stat3 and its downstream proteins Bcl-2, Bcl-xL, Mcl-1, survivin, VEGF, Cyclin D1 and c-myc; thereby, promoting apoptosis and reducing angiogenesis and cell proliferation. These findings validate Stat3 as an important molecular target for NSCLC therapy and demonstrate the efficacy of GQ-ODN in inhibiting Stat3 phosphorylation.

Introduction

Lung cancer is one of the most prevalent cancers and a leading cause of cancer mortality worldwide. In the United States, approximately 170,000 people are diagnosed with lung cancer each year (1,2); approximately 85% of those diagnosed die of the disease. The number of lung cancer deaths exceeds those due to breast, prostate, and colon cancers combined (3). Lung cancer has two major subtypes based on histology, i.e. small cell lung cancer (SCLC) and non-small cell lung cancer (NSCLC) which account for 85% of all lung cancers. More than 60% of all NSCLC patients have advanced or metastatic tumors at the time of diagnosis and are not suitable for surgery (3). Despite advances made in treating the disease over the past two decades, the overall survival of patients with NSCLC remains extremely poor (4). Therefore, innovative treatment approaches that employ new agents targeting novel molecules are urgently needed. In this regard, Stat3, a critical mediator of oncogenic signaling that is highly activated in a wide variety of human tumors (5), may hold promise.

Signal transducer and activator of transcription (STAT) proteins were discovered as latent cytoplasmic transcription factors (6). Seven known mammalian STAT proteins (i.e., Stat1, 2, 3, 4, 5a, 5b, and 6) are involved in immune response, inflammation, proliferation, differentiation, development, cell survival, and apoptosis (5). These proteins contain several domains: a tetramerization domain, a coil-coil domain, a DNA-binding domain, a linker domain, an Src-homology 2 (SH2) domain, a critical tyrosine residing near the C-terminal end, and a C-terminal transactivation domain (7,8). STAT proteins are activated in response to the binding of a number of ligands, including cytokines (e.g., IL-6) and growth factors (e.g., EGF), to their cognate cell surface receptors, and are recruited to specific phosphotyrosine residues within receptor complexes through their SH2 domains; they subsequently become phosphorylated on the tyrosine residue within their C-terminus and dimerize through reciprocal interactions between the SH2 domain of one monomer and the phosphorylated tyrosine of the other. The activated dimers translocate to the nucleus, where they bind to DNA-response elements in the promoters of target genes and activate specific gene expression programs (9).

Stat3 has been identified as an important target for cancer therapy, since it participates in oncogenesis through the upregulation of genes encoding apoptosis inhibitors (Bcl-xL, Mcl-1, and survivin), cell-cycle regulators (cyclin D1 and c-myc), and inducers of angiogenesis (VEGF) (9). Mounting evidence has shown that Stat3 is also constitutively activated in many human cancers, including 82% of prostate cancers, 70% of breast cancers, over 90% of head and neck cancers, and more than 50% of lung cancers (10-13). These findings provide a strong rationale for targeting Stat3 to treat human cancers.
Recently, we laid the groundwork to develop G-quartet oligodeoxynucleotide (GQ-ODN), which forms G-quartet helical DNA structures, as a potent inhibitor of Stat3 activation. In our preliminary studies, we have: i) demonstrated that GQ-ODN selectively inhibits Stat3 activation in cancer cells; ii) developed a novel delivery system for GQ-ODN, to increase drug activity in cells and in vivo; and iii) shown that GQ-ODN T40214 and T40231 significantly suppress tumor growth and greatly increase the survival of nude mice with tumors in which Stat3 is activated (14-16). This report is a part of our systematic in vivo examination, which aims to determine whether Stat3 as an oncogenic signaling molecule will have the same influence on tumor progression in different human cancers and whether GQ-ODN will have a similar effect on suppressing tumor growth in different xenografted models under the same conditions. Here we have demonstrated that: i) as a critical oncogenic signaling pathway, Stat3 strongly influences the progression of NSCLC in vivo; and ii) targeting the Stat3 molecule with GQ-ODN constitutes a novel and potent therapeutic treatment for NSCLC. We also provide experimental evidence for the proposed mechanism, that a tyrosine-phosphorylated STAT dimer is quickly dephosphorylated when the STAT dimer is dissociated from DNA in cells (17,18). Based on the results, we suggest that GQ-ODN is a novel and promising class of anti-cancer drug in the treatment of metastatic tumors.

Materials and methods

Materials. The following polyclonal antibodies were obtained from Santa Cruz Biotechnology, Inc. (Santa Cruz, CA): anti-Stat3; anti-Stat1; anti-Cyclin D1 against amino acids 1-295, which represents full-length cyclin D1 of human origin; anti-VEGF; anti-Bcl-xL; and anti-Bcl-2. Phospho-specific antibodies, p-Stat1 and p-Stat3, were purchased from Cell Signaling Technology (Beverly, MA). Goat anti-rabbit horseradish peroxidase (HRP) conjugate was purchased from Bio-Rad Laboratories (Hercules, CA), goat anti-mouse HRP conjugate was purchased from BD Transduction Laboratories (Lexington, KY). Penicillin, streptomycin, RPMI-1640 medium, fetal bovine serum (FBS), and 0.4% trypan blue vital stain were obtained from Invitrogen Corporation/Life Technologies, Inc. (Grand Island, NY). Oligonucleotides were synthesized by The Midland Certified Reagent Company, Inc. (Midland, TX), dissolved in Polyethylenimine (PEI) (Aldrich Chemical, WI) as a 1 μg/μl stock solution, and stored at room temperature (RT).

Cell lines and cell culture. The cell lines used in our studies included: A549 (human non-small cell lung carcinoma); H292 (human lung epithelial cell carcinoma); and H359, H596, H1792, and H1299 cells, which were purchased from ATCC (Manassas, VA). These cell lines were cultured in DMEM medium supplemented with 10% FBS, 100 units/ml penicillin, and 100 μg/ml streptomycin.

Western blot analysis. To determine the effect of GQ-ODN on Stat3 phosphorylation, cytoplasmic extracts were prepared, as previously described (14), from murine tumor tissue or A549 lung cancer cells that had been pretreated with GQ-ODN. Lung tumor cells (1 million cells per well in 6-well plates) were first pre-treated with IL-6 (25 ng/ml) or EGF (25 ng/ml) for 30 min. Cells were then washed in serum-free medium and incubated with various concentrations (1.4-142 μM) of GQ-ODN/PEI complexes for 24 h. Cells were lysed with cell lysis buffer and 30 μg of whole cell protein was resolved on 10% SDS-PAGE gel, transferred to a nitrocellulose membrane, blocked with 5% nonfat milk, and probed with specific antibody against Stat3 and tyrosine-phosphorylated Stat3 (p-Stat3). Xenografted tumors were harvested at the end of treatment, diced into small pieces, and sonicated on ice for 2 min. Tumor tissue (100 mg) was lysed in 300 μl of lysis buffer containing protease and phosphatase inhibitors. Tumor tissue protein (50 μg) was resolved on SDS-PAGE and probed by specific antibodies, as previously described. The bands were quantitated using a Personal Densitometer Scanner (version 1.30) and ImageQuant software (version 3.3) (GE Healthcare/Amersham Biosciences).

Animal/xenograft model. Athymic nude mice (Balb-nu/nu, 4 weeks old, weighing approximately 20 g) were obtained from Charles River Laboratories, Inc. (Wilmington, MA). 2.5 million A549 NSCLC cells in 200 μl of PBS were then injected subcutaneously into the right flank of each mouse. After the NSCLC tumors were established (50-150 mm³), the nude mice were randomly assigned to 5 groups of 5 (or 4): Group 1, was treated with PEI (2.5 mg/kg) (vehicle) alone; Group 2 was treated with paclitaxel (a conventional chemotherapeutic agent) at 10 mg/kg; Group 3 was treated with GQ-ODN T40214/PEI (10 mg/kg/+2.5 mg/kg); and Group 4 was treated with GQ-ODN T40231/PEI (10 mg/kg/+2.5 mg/kg) and Group 5 was treated with ns-ODN/PEI (10 mg/kg/+2.5 mg/kg) (control ODN). PEI and ODNs were administered every other day and paclitaxel was injected intraperitoneally (IP) every 4 days. Weight and tumor size were measured every other day. Tumor size was calculated by using the function [a x (0.5b)2], where a equals the length and b equals the width of tumors.

RNase protection assay (RPA). RPA was performed, as previously described (19,20). Briefly, for each sample prepared from NSCLC tumor tissue, five micrograms of total RNA were used in the RNase protection assay. Probes specific to survivin, c-myc, and Mcl-1 mouse genes were prepared. Mouse Angio-1, Apo-2, and CYC-1 multi-probes were obtained from BD Biosciences/Pharmingen (San Diego, CA). An RNase protection assay was performed using a kit (Torrey Pines Biolabs, Inc.; Houston, TX), in accordance with the manufacturer’s instructions. The 32P[UTP] (3000 Ci/mmol, ICN)-labeled antisense RNA probes were synthesized using mCK5 multi-probes (BD Biosciences/Pharmingen) as templates, through an in vitro transcription system (Promega Corporation; Madison, WI). Antisense RNA probes were hybridized with the RNA samples at 90°C for 25 min. Unhybridized single-stranded RNA was digested by ribonuclease A/T1 (Sigma-Aldrich; St. Louis, MO) for 30 min. Double-stranded RNA was precipitated by stop solution at -80°C for 15-30 min, and centrifuged at maximum speed for 30 min. The samples were resolved by 6% sequencing gel. Subsequently, the gels were dried and exposed to X-ray film.
Hematoxylin and eosin staining. Xenografted tumors were harvested from athymic mice treated with vehicle alone (PEI), GQ-ODN T40214, GQ-ODN T40231, and paclitaxel, fixed (with 10% formaldehyde in paraffin), sectioned (5-μm tissue sections) and stained with hematoxylin and eosin (H&E).

Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) analysis. Tissue sections (5 μm) were mounted on siliconized glass slides, air dried, and heated at 45°C overnight. After deparaffinization and rehydration, the sections were digested with proteinase K (120 μg/ml) for 20 min at room temperature. Following quenching of the endogenous peroxidase activity, the sections were washed in PBS, and subsequently incubated with equilibration buffer for 10 min at room temperature. Sections were boiled and 50 μl of a mix containing terminal deoxynucleotidyl transferase, reaction buffer containing dATP, and digoxigenin-11-dUTP was then added. The sections were covered with a plastic coverslip, washed in stop/wash buffer for 10 min at room temperature, and subsequently washed in PBS. The sections were then incubated with anti-digoxigenin peroxidase for 30 min at room temperature and washed in PBS. Color development was accomplished through immersion of the slides in 33-diaminobenzidine/0.1% H₂O₂ for 3-7 min. Sections were counterstained with ethyl green, washed in butanol, cleared in xylol and mounted with permount.

Results

Inhibition of Stat3 activation by GQ-ODN. Recently, we have developed GQ-ODNs as a new class of Stat3 inhibitors. We have previously reported that the leading compounds, T40214 and T40231, selectively inhibit Stat3 activity (IC₅₀ = 5 μM) in the cells of prostate, breast and head and neck cancers (14,16). Here we employed Western blotting to ascertain if GQ-ODN inhibits Stat3 phosphorylation in NSCLC cells. The sequences and structures of GQODN T40214 and T40231 have been previously delineated (Fig. 1A) (14). PEI (polyethyleneimine) was used as vehicle for intracellular delivery of ODN at the ODN/PEI ratio of 4:1. ß-actin was used as the loading control. When compared to the tyrosine-phosphorylated Stat3 (p-Stat3) band in lane 1, lane 2 shows that PEI alone has no inhibitory effect on p-Stat3 in NSCLC cells. The p-Stat3 was significantly reduced when the concentration of T40214 increased (lanes 3 to 6). The IC₅₀ of p-Stat3 dephosphorylation for T40214 was ~5.4 μM. Along with p-Stat3, we also detected tyrosine-phosphorylated Stat1 (p-Stat1) and Stat5 (p-Stat5) in NSCLC cells under similar experimental conditions. Importantly, we found that GQ-ODN T40214 does not inhibit the activation of p-Stat1 nor p-Stat5 in NSCLC cells, showing that GQ-ODN selectively inhibits p-Stat3 activation (Fig. 1B). Furthermore, tyrosine-phosphorylated JAK1 (p-JAK1) and JAK2 (p-JAK2) were also detected in NSCLC cells; and were not found to be inhibited by GQ-ODN T40214. This further reinforces the specificity of GQ-ODN to the selective inhibition of Stat3 protein (Fig. 1C).

GQ-ODN suppressed the growth of NSCLC tumors. Assessing the effectiveness of a drug in animal models is an important step toward establishing its potential clinical utility. To this end, we utilized nude mice xenografts as animal models of cancer to test the anti-cancer potential of GQ-ODN. First, nude mice were injected subcutaneously with NSCLC cells (e.g., A549) in which Stat3 is constitutively active. After tumors were established (vol. 50~150 mm³), treatment of nude mice with NSCLC (A549) tumors was performed by intraperitoneal (IP) injection. The nude mice were randomly assigned to 5 groups (4 or 5 mice in each group); Group 1 was treated with PEI alone (2.5 mg/kg); Group 2 was treated with paclitaxel (a clinical drug) (10 mg/kg); Groups 3 and 4 were treated with T40231/PEI and T40214/PEI (10 mg/kg/2.5 mg/kg), respectively; and Group 5 was treated by ns-ODN/PEI (10 mg/kg/2.5 mg/kg). PEI and ODNs were administered every two days; paclitaxel was...
injected every four days, to ensure safety of the mice from toxicity. Results demonstrate that, over the 21-day treatment period, i) the mean size of NSCLC tumors in the PEI- and ns-ODN-treated mice increased from 93 to 1144 mm\(^3\) and from 53 to 1334 mm\(^3\), respectively; ii) the mean size of NSCLC tumors in the paclitaxel-treated mice increased from 88 to 519 mm\(^3\); and iii) the mean size of NSCLC tumors in the mice treated with T40231 and T40214 only increased from 89 to 204 mm\(^3\) and from 83 to 123 mm\(^3\), respectively (Fig. 2). Significant differences in tumor growth were observed between PEI-treated mice and T40214-treated (p=0.002) or T40231-treated mice (p=0.004) and between the mice treated by ns-ODN (a control ODN) and by T40214 (p=0.019) or by T40231 (p=0.028) as well.

Targets of GQODN. To determine the targets of GQ-ODN and possible mechanism of GQ-ODN suppressing tumor growth, we performed immunoblotting assays on tumor tissue, as described in Materials and methods. Results demonstrate the expression of p-Stat3 and its regulated proteins in NSCLC tumors (Fig. 3A). An equal amount of protein from each tumor sample was loaded, and the intensities of the bands from mice treated with T40214/PEI (lane 2), T40231/PEI (lane 3) or paclitaxel (lane 4), were compared with that from the PEI-treated mice (lane 1). We found that GQ-ODN T40214 and T40231 totally blocked expression of phosphorylated Stat3 (p-Stat3) and its downstream proteins (i.e., Bcl-2, Bcl-x\(_L\), Mcl-1, survivin, VEGF, Cyclin D1, and c-myc) in NSCLC tumors. However, paclitaxel did not inhibit p-Stat3, and only
partially blocked expression of Bcl-xL, Bcl-2, survivin, and c-myc in NSCLC tumors.

To determine whether the Stat3-regulated proteins (e.g., Bcl-2, Bcl-xL, Mcl-1, VEGF, and others) are inhibited by blocking Stat3 DNA transcription or directly by GQ-ODN, an RNase protection assay (RPA) was employed to test the mRNA of the Stat3-regulated genes in NSCLC tumors. The results, obtained from the tumors of two PEI-treated mice (lanes 1 and 2) and two T40214-treated mice (lanes 3 and 4), clearly show that the level of mRNA of Mcl-1, VEGF, bcl-x, and bcl-2 in T40214-treated mice were much lower than those in PEI-treated control tumors (Fig. 3B). The mRNAs of L32 and GAPDH represent internal controls. The RPA data provide solid evidence that GQ-ODNs inhibit the activation of Bcl-2, Bcl-xL, Mcl-1, survivin, VEGF, Cyclin D1, and c-myc in NSCLC tumors through the disruption of Stat3 transcription.

Independent of Stat3, Stat1 and Stat5 are also active in human cancers, including NSCLC, and therefore the selective mRNA of Stat3-regulated genes in NSCLC tumors. The results, obtained from the tumors of two PEI-treated mice (lanes 1 and 2) and two T40214/PEI-treated mice (lanes 3 and 4), clearly show that the level of mRNA of Mcl-1, VEGF, bcl-x, and bcl-2 in T40214/PEI-treated tumors were much lower than those in PEI-treated control tumors (Fig. 3B). The mRNAs of L32 and GAPDH were equally loaded as controls. The RPA data provide solid evidence that GQ-ODNs inhibit the activation of Bcl-2, Bcl-xL, Mcl-1, survivin, VEGF, Cyclin D1, and c-myc in NSCLC tumors through the disruption of Stat3 transcription.
targeting of Stat3 becomes a key factor in the development of a potent Stat3 inhibitor. Using Western blot analysis we have shown that GQ-ODN T40214 and T40231 do not target Stat1 and Stat5. A comparison of the bands was made between T-Stat1 (total Stat1) and p-Stat1 and between T-Stat5 (total Stat5) and p-Stat5 of each tumor treated with PEI, T40214, T40231 and paclitaxel, respectively. Results demonstrate an absence of inhibition of Stat1 and Stat5 activation in GQ-ODN T40214- and T40231-treated NSCLC tumors (Fig. 3C). These results from tumor tissues are consistent with that obtained from NSCLC cells.

Tumor apoptosis and angiogenesis. We set out to determine if suppression of tumor-growth by GQ-ODN T40214 and T40231 was associated with an increase in apoptosis and reduction in angiogenesis in tumors. The TUNEL assay based on labeling the apoptotic cells with cleaved DNA fragments at the single cell level was performed to quantify apoptosis in tumors and light microscopy was used for data analysis. The apoptotic tumor cells were stained dark brown via TUNEL-positive staining, and the normal tumor cells remained unstained. Results show significant apoptosis in NSCLC tumors treated by GQ-ODN T40214 (Fig. 4A, right panel), when compared with NSCLC tumors treated by PEI alone (Fig. 4A, left panel). The analyses of the TUNEL-positive cells among total cells indicated that the percentage of apoptotic cells in PEI-treated tumors was 1.9% while that in T40214-treated tumors increased to 21.1% (p<0.0002, Wilcoxin rank sum test) (Fig. 4A, bottom panel).

VEGF staining was performed using immunohistochemistry with peroxidase-labeled secondary antibodies; negative controls (first incubation step, without primary antibody) were also included. When no staining was observed, the result was considered negative, whereas, moderate staining in the majority of the cells was considered positive. Slides were incubated with a mouse anti-VEGF monoclonal antibody. VEGF was highly expressed in the tissue of NSCLC tumors treated by PEI alone (the cycled areas) (Fig. 4B, left panel); however, VEGF was not observed in the tumors treated by GQ-ODN (Fig. 4B, right panel). These observations are consistent with the Western blotting results, which indicate that the expression of VEGF was totally blocked in GQ-ODN-treated tumors, but not in PEI-treated tumors. Microscopy with H&E staining clearly showed GQ-ODN-treatment to cause tumor cell shrinkage with chromatin condensation and partial necrosis (Fig. 4C, right panel); in contrast, PEI-treatment did not result in such changes in tumors (Fig. 4C, left panel).

Discussion

Although chemotherapy provides a clinically significant benefit for patients with advanced NSCLC, the improvement of survival for these patients is only modest (21); thus, there is a need to search for novel therapeutics. Haura et al showed that p-Stat3 was highly expressed in 54% of NSCLC primary tumors, suggesting that Stat3 is a promising molecular target for lung cancer (22). Our results show that when GQ-ODN was incubated with NSCLC cells for 24 h, T40214 selectively inhibited Stat3 phosphorylation. Moreover, GQ-ODN T40214 did not inhibit the activation of JAK kinases, the upstream proteins of STAT. In addition, our results in cell and tumor clearly show that GQ-ODN selectively inhibits the activation of Stat3, but not Stat1 and Stat5, both in vitro and in vivo. The selective inhibition of Stat3 activation for GQ-ODN in vivo...
is considered beneficial to prospective clinical studies with regard to GQ-ODN since this selective targeting of Stat3 becomes a key factor in the development of a potent Stat3 inhibitor. Independent of Stat3, Stat1 and Stat5 are also active in many human cancers (5). Stat5-induced cell survival promotion has a potent oncogenic role similar to Stat3 (21). Stat1, which acts in a pro-apoptotic and anti-proliferative manner, seems to be a tumor suppressor whose functions totally differ from those of Stat3 (22,23).

In our previous studies (14,16), we demonstrated that GQ-ODN predominantly interacts with the p-Stat3 dimer in the range of amino acid residues 638 to 652, within the SH2 domains. The selective inhibition of p-Stat3 activity by GQ-ODN is based upon a few critical residues that form a local structure different from that of p-Stat1 dimer. In the p-Stat3 dimer, the paired residues of Q643 and N646 repel one another to form a channel conformation, in which GQ-ODN is held by seven H-bonds. However, the corresponding paired-residues of Stat1 dimer, K637 and S640, lock the dimer together; thereby, blocking the interaction of GQ-ODN with Stat1.

Destabilizing the complex between p-Stat3 dimer and DNA is a critical step for the dephosphorylation of p-Stat3 by GQ-ODN. GQ-ODN T40214 promotes p-Stat3 dephosphorylation by blocking DNA binding to p-Stat3 dimer and forming an unstable complex between GQ-ODN T40214 and p-Stat3 dimer (3D model shown in Fig. 5). This unstable complex will dephosphorylate faster than the DNA complex. Computational energy calculation supported this hypothesis. The binding energy for the complexes DNA/p-Stat3 dimer and GQ-ODN T40214/p-Stat3 dimer are -213 kcal/mol and -73 kcal/mol, respectively. This selective inhibition of Stat3 phosphorylation observed in Q-ODN-treated tumors (Fig. 3) is one of the greatest advantages of GQ-ODN as an anti-cancer drug.

We have demonstrated that T40214 and its analog T40231 totally blocked p-Stat3 and its downstream target proteins, including anti-apoptotic proteins: Bcl-2, Bcl-xL, Mcl-1, and survivin; inducer of angiogenesis, VEGF; and the proteins for cell proliferation: Cyclin D1, and c-myc in tumor tissue (Fig. 3A). Additionally, we also have demonstrated that GQ-ODN blocks the transcription of Stat3-regulated genes: Bcl-2, Bcl-xL, Mcl-1, survivin, and VEGF in tumor tissue. ODN also blocks the transcription of Stat3-regulated genes: (Fig. 3A). Additionally, we also have demonstrated that GQ-ODN T40214/p-Stat3 dimer are -213 kcal/mol and -73 kcal/mol, respectively. This selective inhibition of Stat3 phosphorylation observed in Q-ODN-treated tumors (Fig. 3) is one of the greatest advantages of GQ-ODN as an anti-cancer drug.

References
34. Faderl S, Ferrajoli A, Harris D, Van Q, Priebe W and Estrov Z:
33. Meydan N, Grunberger T, Dadi H, Shahar M, Arpaia E, Lapidot Z,
29. Grandis JR, Drenning SD, Zeng Q, Watkins SC, Melhem MF,
28. Coleman DR, Ren Z, Mandal PK, Cameron AG, Dyer GA,
24. Turkson J, Ryan D, Kim JS, Zhang Y, Chen Z, Haura E,
20. Chen S, Bacon KB, Li L, Garcia GE, Xia Y, Lo D, Thompson DA,
136
30/5/07 13:44 Page 136
Roifman CM: Inhibition of acute lymphoblastic leukaemia by a
Leeder JS, Freedman M, Cohen A, Gazit A, Levitzki A and
nucleotide abrogates head and neck cancer cell growth. Proc
Grandis JR: Targeted inhibition of Stat3 with a decoy oligo-
leads to apoptosis of leukemic large granular lymphocytes and
and Yu H: Overexpression of a dominant-negative signal
and activator of transcription 3 pathway in head and neck
595-596, 2005.
Feng L, Garcia GE, Yang Y, Xia Y, Gabbai FB, Peterson OW,
Chen S, Bacon KB, Li L, Garcia GE, Xia Y, Lo D, Thompson DA,
Debierre-Grockiè F: Anti-apoptotic role of STAT5 in haemato-
Reck M, Schwartzzeimer U: Chemotherapy in stage-IV NSCLC.
O'Shea JJ, Gadina M and Schreiber RD: Cytokine signaling in
S121-S131, 2002.
Turkson J, Ryan D, Kim JS, Zhang Y, Chen Z, Haura E, Laudano A, Sebti S, Hamilton AD, and Jove R: Phosphoryrosyl peptides lock Stat3 dimers and DNA binding activity, gene regul-
Stahl N, Farruggella TJ, Boulton TG, Zhong Z, Darnell JE Jr and
Yancopoulos GD: Choice of STATs and other substrates specified by modular tyrosine-based motifs in cytokine receptors.
Shi X, Franko B, Frantz C, Amin HM and Lai R; JSI-124 (cucurbitacin I) inhibits Janus kinase-3/signal transducer and activator of transcription-3 signaling, downregulates nucleo-