Abstract. Hepatocellular carcinoma (HCC) is a common malignant tumour. Development of HCC is a multi-step process from well-differentiated (G1), moderately differentiated (G2) to poorly differentiated (G3) phenotype. The early molecular modulators causing the onset of hepatocarcinogenesis are not fully understood. In the present study, we conducted comparative proteomics to analyze the differential proteome of G1 tumour and adjacent non-tumour tissues, with aims to identify the molecules as early tumour markers and to understand the early molecular events involved in initiation of tumorigenesis in hepatitis B virus (HBV)-infected G1 tumour. Differentially expressed proteins were identified by MALDI-TOF/TOF tandem mass spectrometry and NCBInr database interrogation. A total of 15 differentially expressed proteins with diverse biological functions were identified. Among these, 4 proteins were down-regulated, whereas the other 11 proteins were up-regulated in the G1 tumours. Two proteins, Proteasome activator subunit 1 (PA28α) and DJ-1, were firstly found to be down-regulated in HBV-infected G1 tumours. Down-regulations of these two proteins were further validated by Western blotting and immunohistochemistry in a panel of clinical specimens. These findings elucidate, at least in part, the molecular events underlying the mechanism and the potential roles of DJ-1 and PA28α in the onset of hepatocarcinogenesis.

Introduction

Hepatocellular carcinoma (HCC) develops from a chronic inflammatory liver disease caused by hepatitis B or C virus, alcohol abuse, exposure to carcinogen such as aflatoxin B1, and genetic alteration, etc. (1). The high incidence of death of patients with HCC is mainly due to the lack of a valuable prognostic indicator and effective treatment. There are a few biomarkers for clinical diagnosis in HCC: α-fetoprotein (AFP), des-γ-carboxy prothrombin plasma abnormal prothrombin, the L3 fraction (AFP-L3), isozyme of alkaline phosphatase (variant ALP), and isozyme of γ-glutamyl transpeptidase (novel γ-GTP) (2). However, considering the sensitivity, specificity and operability, only AFP is a useful marker in the diagnosis of HCC, especially HBV-associated HCC. Nevertheless, the AFP level is normal in up to 30% of patients with liver cancer, and other factors including early childhood liver damage from hepatitis, or tumours of the testis can also raise the AFP level. Therefore, as an HCC tumour marker, the AFP test has minimal clinical significance and must be interpreted together with a proper imaging diagnosis of the liver.

Recently, the proteomics approach has been widely used in discovering tumour-associated biomarker/drug targets and in deciphering the molecular mechanism underlying the tumorigenesis. In HCC, many potential markers have been identified from clinical tissue specimens using different proteomic approaches, including laser capture microdissection (LCM), isotope-coded affinity Tag (ICAT), two-dimensional gel electrophoresis (2-DE), two-dimensional difference gel electrophoresis (2-D-DIGE) and mass spectrometry (3-9). Such analyses have revealed the complicated molecular repertoire of markers which are involved in a variety of biological functions including signal transduction, metabolism and apoptosis. Unfortunately, only a few of the protein markers have been validated in clinical specimens due to the lack of available antibodies or due to the large-scale labour-intensive work involved in the validation process. Among them, alteration of aldehyde dehydrogenase isozyme closely correlated to HCC (10), and human aldose reductase-like protein-1 was suggested to be a strong candidate as an

Correspondence to: Dr Daohai Zhang, Molecular Diagnosis Centre, Department of Laboratory Medicine, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074
E-mail: daohai_zhang@nuh.com.sg

*Co-corresponding authors

Abbreviations: HCC, hepatocellular carcinoma; PA28α, proteasome activator subunit 1; DJ-1, Parkinson disease (autosomal recessive, early onset) 7; AFP, α-fetoprotein; HBV, hepatitis B virus; HCV, hepatitis C virus; 2-DE, 2-dimensional electrophoresis

Key words: hepatocellular carcinoma, proteomics, well differentiated, PA28α, DJ-1, hepatitis B virus

Proteomic identification of down-regulation of oncoprotein DJ-1 and proteasome activator subunit 1 in hepatitis B virus-infected well-differentiated hepatocellular carcinoma

DAOHAI ZHANG1,2*, SENG GEE LIM3 and EVELYN S.C. KOAY1,2*

1Department of Laboratory Medicine, National University Hospital; Departments of 2Pathology, and 3Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074

Received February 12, 2007; Accepted April 2, 2007

Correspondence to: Dr Daohai Zhang, Molecular Diagnosis Centre, Department of Laboratory Medicine, National University Hospital, 5 Lower Kent Ridge Road, Singapore 119074
E-mail: daohai_zhang@nuh.com.sg

*Co-corresponding authors

Abbreviations: HCC, hepatocellular carcinoma; PA28α, proteasome activator subunit 1; DJ-1, Parkinson disease (autosomal recessive, early onset) 7; AFP, α-fetoprotein; HBV, hepatitis B virus; HCV, hepatitis C virus; 2-DE, 2-dimensional electrophoresis

Key words: hepatocellular carcinoma, proteomics, well differentiated, PA28α, DJ-1, hepatitis B virus
immunohistochemical diagnostic marker (6). Further, the Hsp27 expression correlated with the level of AFP but not with tumour stage (5), although it was considered to be a potential serum biomarker in patients with HCC (11). Other potential markers include α-ensolase whose level correlated to HCV-infected HCC tumour progression (12) and protein C3a whose expression was elevated in patients with HCV-related HCC (13). Nevertheless, clinical validation and application of the tumour-marker candidates are an urgent requirement in cancer translational interface.

HCC is developed from a multi-step process based on histologic changes: tumour cells are initially well differentiated (grade 1, G1), and then progress to moderately differentiated (grade II, G2) and poorly differentiated (grade III, G3) types with high proliferation rates. Evidence has shown that the proteome profiles of HCC tumours are grade-dependent. In HCC, cytokeratin 19 (CK19) was highly expressed in the late stage of tumours (G3) and strongly related to metastatic behaviour (14). α-ensolase was strongly expressed in G3 tumours compared with G1 and G2 tumours (12), and glutamine synthetase was highly expressed in HCV-infected G1 tumours (15). Recently, protein Hcc-2 was found to be up-regulated in G3 tumours but unchanged in G1 tumours (16). In addition, proteome profiles of HCC are also virus-dependent. Previous study demonstrated that HCC proteome and gene expression profiling vary between HBV- and HCV-infected HCC tumours (8,17). Kim et al found that Hsp27 was down-regulated in HBV-related HCC, but up-regulated in HCV-related HCC, whereas ECH1 was highly expressed in HCV-infected HCC, but decreased in HBV-infected HCC tumours with no clarification of tumour grade (8). As such, the HCC specimens for proteomics study should be carefully selected when addressing the relevance of molecular alterations with specific aetiology and/or histopathological features.

In the present study, we analyzed the differential proteome profiles between HBV-infected G1 tumour and adjacent non-tumour tissues in order to identify the potential molecules as early tumour markers and to understand the early molecular events involved in initiation of tumourigenesis. We have identified 15 dysregulated proteins with varieties of biological functions by MALDI-TOF/TOF tandem mass spectrometry and NCBInr database interrogation. Two proteins including oncoprotein DJ-1 and proteasome activator subunit 1 (PA28a) were, for the first time, found to be down-regulated in the HBV-infected G1 tumour. Their roles in hepatocarcinogenesis and potentials as early biomarkers for cancer diagnosis are discussed.

Materials and methods

Tissue specimens. Six pairs of human HBV-infected (G1) HCC frozen tumour tissues and the adjacent non-tumour tissues were provided by Professor SG Lim, Department of Medicine, National University Hospital. The HCC tissue collections were obtained under informed consent and were approved by the ethics committee of the hospital. These tumour specimens were diagnosed as well differentiated (G1) by pathological examination, according to the method described by Desmet et al (18). These tumour/non-tumour tissues were used for proteome analysis.

Protein extraction and protein separation by 2-dimensional electrophoresis (2-DE). For each sample, the frozen liver tissue was transferred to a pre-cooled mortar, ground to powder in liquid nitrogen, and solubilized in Tissue Protein Extraction Reagent® (Pierce, Rockford, IL, USA) according to the manufacturer’s protocol. Samples were cleaned up using a PlusOne 2D Clean-up kit (GE Healthcare, San Francisco, CA, USA) and re-dissolved in sample buffer (7 M urea, 2 M thiourea, 4% CHAPS, 1% Mega-10, 0.5% Triton x-100, 50 mM dithiothreitol, 1% IPG buffer (pH 4-7) and 2 mM tributyl phosphine). Protein concentrations were determined using the PlusOne 2D quantitation kit (GE Healthcare).

2-DE and image analysis were performed as described previously (19). Briefly, equal amounts (120 μg) of proteins from tumour and matched non-tumour tissues were separately mixed with 350 μl of rehydration solution containing 7 M urea, 2 M thiourea, 4% CHAPS, 0.5% IPG buffer (pH 4-7), and rehydrated for 12 h at 20 V using the Immobiline DryStrip (180 mm, pH 4-7) (GE Healthcare). Proteins were isoelectrically focused at 500 V for 1 h, 2000 V for 1 h, 4000 V for 2 h and 8000 V for 6 h on an Etan IPGphor electrophoresis system (GE Healthcare). After equilibration for 2x15 min in equilibration buffer, IPG strips were applied for SDS-PAGE (12%) using a PROTEAN® II xi Cell system (Bio-Rad, Hercules, CA, USA). The separated proteins were visualized by silver staining (19).

Image acquisition and analysis. Silver-stained gels were scanned using the Personal SI densitometer (Molecular Dynamics, Sunnyvale, CA, USA). Spot detection, matching and expression levels of proteins on 2-DE gels were quantitatively analyzed, based on the spot intensities, using the ImageMaster 2D Elite software (GE Healthcare). Differences in expression levels between paired samples were analyzed by Student’s t-test. Protein spots showing at least 2-fold changes (p<0.05) in intensity were picked for trypsin digestion and MALDI-TOF/TOF MS/MS analysis.

Trypsin in-gel digestion and mass spectrometry. The protein spots were manually excised from the gel and digested with trypsin, as described previously (19). After being dehydrated with acetonitrile and dried in a SpeedVac centrifuge, the gels were re-swelled with 20–40 μl digestion solution containing 20 mM ammonium bicarbonate and 20 ng/μl of sequencing grade trypsin (Promega, Madison, WI, USA) and treated at 37°C overnight. The resultant peptides were extracted, desalted with ZipTip C18 columns (Millipore Corporation, Bedford, MA, USA) and eluted with 2.5 μl of 50% ACN containing 0.5% TFA. Peptide mass spectra were obtained by the ABI 4700 proteomics analyzer MALDI-TOF/TOF MS/MS (Applied Biosystems, Framingham, MA, USA), as described (20).

Known contamination peaks such as keratin and autoproteolysis peaks were removed prior to the database search. Protein identification was performed using the MASCOT software (Matrix Science, London, UK) and all tandem mass spectra were searched against the NCBInr database, with a mass accuracy of within 200 ppm for the mass measurement, and within 0.5 Da for MS/MS tolerance window. Searches were performed without constraining protein molecular weight (Mr) or isoelectric point (pI) and species, and allowing for
carbamidomethylation of cysteine and partial oxidation of methionine residues. Up to one missed tryptic cleavage was considered for all tryptic-mass searches. Protein scores >75 were considered to be significant (p<0.05).

Immunoblot analysis. Twenty μg of total proteins from six pairs of HCC samples were separated by 12% SDS-PAGE and electro-transferred onto poly-vinylidene difluoride (PVDF) membranes by the SemiDry apparatus (Bio-Rad). The membranes, after blocking with 5% nonfat dry milk in TBS-T buffer (Tris-buffered saline, 0.1% Tween-20), were probed with one of the following antibodies: mouse monoclonal anti-human DJ-1 (Zymed® Laboratories, South San Francisco, CA, USA), rabbit polyclonal anti-human PA28α (Calbiochem®), and incubated at 4°C overnight. β-actin signal was detected by a goat anti-rabbit IgG horseradish peroxidase (ZyMED® Laboratories Inc, San Francisco, CA, USA) or goat anti-mouse IgG horseradish peroxidase (Upstate, Lake Placid, NY, USA) and used as an internal control. Signal intensity was quantitatively analyzed using the GeneTools software (Syngene).

Immunohistochemistry. Immunohistochemical staining (IHC) of DJ-1 and PA28α in 15 pairs of paraffin-embedded, HBV-infected G1 tumour and non-tumour tissues were performed.

Table I. Summary of identified proteins with MALDI-TOF/TOF tandem mass spectrometry.a

<table>
<thead>
<tr>
<th>Spot no.</th>
<th>Protein ID</th>
<th>Swiss-Prot</th>
<th>Mr/pI</th>
<th>Score</th>
<th>MS/MS peptide/ matched peptide</th>
<th>Relative level (tumour/non-tumour)</th>
<th>Sequence coverage (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Heat shock protein 27 (HSP27)</td>
<td>P04792</td>
<td>22.4/7.83</td>
<td>358</td>
<td>5/13</td>
<td>2.23</td>
<td>52</td>
</tr>
<tr>
<td>2</td>
<td>Chloride intracellular channel 1 (CLIC1)</td>
<td>O00299</td>
<td>26.5/4.95</td>
<td>171</td>
<td>3/9</td>
<td>2.16</td>
<td>35</td>
</tr>
<tr>
<td>3</td>
<td>Glutathione S-transferase (GST)</td>
<td>P09211</td>
<td>23.6/5.43</td>
<td>344</td>
<td>3/14</td>
<td>3.22</td>
<td>57</td>
</tr>
<tr>
<td>4</td>
<td>Regucalcin (RGN)</td>
<td>Q15493</td>
<td>33.8/5.89</td>
<td>105</td>
<td>2/10</td>
<td>0.23</td>
<td>33</td>
</tr>
<tr>
<td>5</td>
<td>Inorganic pyrophosphatase (PPA)</td>
<td>Q15181</td>
<td>33.1/5.54</td>
<td>87</td>
<td>2/13</td>
<td>2.78</td>
<td>32</td>
</tr>
<tr>
<td>6</td>
<td>Ketohexokinase (KHK)</td>
<td>P50053</td>
<td>25.5/5.99</td>
<td>141</td>
<td>2/9</td>
<td>2.35</td>
<td>40</td>
</tr>
<tr>
<td>7</td>
<td>3-Hydroxyanthranilate 3,4-dioxygenase (HAAO)</td>
<td>P46952</td>
<td>32.7/5.72</td>
<td>83</td>
<td>2/9</td>
<td>2.51</td>
<td>32</td>
</tr>
<tr>
<td>8</td>
<td>Enoyl-CoA hydratase (ECH1)</td>
<td>Q13011</td>
<td>31.8/8.34</td>
<td>169</td>
<td>2/10</td>
<td>2.19</td>
<td>38</td>
</tr>
<tr>
<td>9</td>
<td>Nucleoside diphosphate kinase (NM23-H1)</td>
<td>P15531</td>
<td>19.8/5.42</td>
<td>396</td>
<td>6/16</td>
<td>2.08</td>
<td>51</td>
</tr>
<tr>
<td>10</td>
<td>Tubulin α-6 (TUBA6)</td>
<td>Q9BQE3</td>
<td>50.7/4.96</td>
<td>307</td>
<td>5/14</td>
<td>2.78</td>
<td>33</td>
</tr>
<tr>
<td>11</td>
<td>Tubulin β-chain (TUBB)</td>
<td>P07437</td>
<td>50.3/4.78</td>
<td>118</td>
<td>3/13</td>
<td>2.15</td>
<td>27</td>
</tr>
<tr>
<td>12</td>
<td>Apolipoprotein A-1 (APOA1)</td>
<td>P02647</td>
<td>30.7/5.56</td>
<td>130</td>
<td>5/17</td>
<td>2.59</td>
<td>40</td>
</tr>
<tr>
<td>13</td>
<td>Proteasome activator subunit 1 isoform 2 (PA28α)</td>
<td>Q06323</td>
<td>28.7/6.28</td>
<td>104</td>
<td>3/9</td>
<td>0.45</td>
<td>17</td>
</tr>
<tr>
<td>14</td>
<td>DJ-1</td>
<td>Q99497</td>
<td>20.6/3.33</td>
<td>109</td>
<td>2/9</td>
<td>0.32</td>
<td>22</td>
</tr>
<tr>
<td>15</td>
<td>Triosephosphate isomerase (TP1)</td>
<td>P60174</td>
<td>26.7/7.1</td>
<td>81</td>
<td>2/6</td>
<td>0.38</td>
<td>23</td>
</tr>
</tbody>
</table>

aThe Mowse score of >75 was considered as significant (p<0.05).
using the Dako system as previously described (19,20). Briefly, sections of 4-μm thickness from both tumour and matched non-tumour tissue blocks were dewaxed, rehydrated and labelled for 60 min at room temperature with each of the two antibodies after conducting the antigen retrieval: anti-DJ-1 (1:20) and anti-PA28α (1:50), followed by detection with labelled dextran polymer conjugated with peroxidase and DAB+-substrate chromagen solution. Slides were lightly counter-stained with hematoxylin before imaging. The staining levels were scored as negative, weak, moderate and strong based on the staining intensity by the pathologist. Negative and weak stainings were considered as negative whereas moderate and strong stainings were considered as positive.

Statistical analysis. Statistical differences in the levels of PA28α and DJ-1 in paired tumour and non-tumour tissues were analyzed by Fisher's exact test. \(p<0.05 \) at two sides was considered as significant.

Results

Proteomic analysis of tumour and non-tumour tissues. To identify the potential tumour markers for early diagnostic purpose and elucidate the molecular changes at the early onset of heptocarcinogenesis, we compared the proteome profiles of three pairs of HBV-infected G1 tumour and adjacent non-tumour tissues. With the ImageMaster analysis software, more than 700 spots were detected in each gel, and in total, 35 spots were found to be consistently up- or down-regulated (>2.0-fold increase or decrease, Student t-test, \(p<0.05 \)) in at least two pairs of specimen. Fig. 1 shows the representative silver-stained 2-DE gel. After MALDI-TOF/TOF tandem mass spectrometry analysis and NCBInr database search using Mascot software, 15 proteins were identified as listed in Table I. Their positions on the 2-DE map are annotated in Fig. 1. Of these identified proteins, 4 (RGN, DJ-1, PA28α and TPI) were down-regulated, whereas the other 11 were up-regulated, in the HBV-infected G1 tumours. Most of these identified proteins have been reported elsewhere (3,8,9,21), however, two proteins including PA28α (spot 13) and oncoprotein DJ-1 (spot 14), that were not previously identified in the proteome analysis of HCC, were found to be down-regulated in the HBV-infected G1 tumours. Their representative 2-DE spot images with the MS/MS spectrum are shown in Fig. 2.

![Figure 1. Differential proteome analysis of HBV-infected, well-differentiated HCC tumour and adjacent non-tumour tissues. Total protein lysates were separated by IEF using IPG DryStrip (180 mm, pH 4-7) and SDS-PAGE (12%). Silver-stained gels were scanned using the Personal SI densitometer (Molecular Dynamics) and analyzed using the ImageMaster 2D Elite software (GE Healthcare). The locations of identified proteins by MALDI-TOF/TOF tandem mass spectrometry are shown.](image1.png)

![Figure 2. Identification of PA28α (spot 13) and DJ-1 (spot 14) by tandem mass spectrometry. (A) Zoom images from 2-DE gels showing spots containing PA28α and DJ-1. (B) MS/MS spectrum of the doubly charged precursor ion with \(m/z \) 1501.75 for peptide 199QLVHELDEAEYR210 of PA28α and the doubly charged precursor ion with \(m/z \) 1675.83 for peptide 13GAEEMETVIPVDVMR27 of DJ-1. Inserted figure is the Mowse score from database search.](image2.png)
Functional classification of the tumour marker molecules. To understand the biological relatives of the identified molecules with the onset of tumorigenesis in HBV-infected HCC, the identified 15 proteins were classified by their biological functions with the tools on www.geneontology.org (Table II). In brief, these proteins were functionally involved in enzyme activity (glyco-metabolism, lipid metabolism), immune activity, anti-apoptosis, Ca²⁺ binding/signal transduction, cell structure, protein folding and metastasis. Of the 15 proteins, eight were cytoplasmic, two were nucleic, one was mitochondrial, one was peroxisomal and one was secreted protein. Furthermore, by analyzing the chromosomal localization of these protein-encoding genes and genomic imbalance, we found a link. For example, the Hsp27 gene, located at 7q11.23, mapped within cancer-related chromosome region 7q11.23 (colon cancer and prostate cancer). On chromosome 1, chromosomal localization of oncogene DJ-1, 1p36.23, is associated with three cancer-related chromosome regions: 1p36 (ductal breast cancer), 1p36 (prostate cancer-brain cancer susceptibility) and 1p36.11 (liver cancer). Abnormality of these proteins may be involved in a network or oncogenic signal pathways required for the onset of the multi-step process in HCC development.

Immunoblotting and immunohistochemistry. As the reduced expression of the two proteins, PA28α and DJ-1, has not been identified previously, we further confirmed their differential expression by Western blotting in 6 pairs of HBV-infected, well-differentiated HCC tumour and adjacent non-tumour tissues. Proteins from each of the six pairs of tissue samples were separated by SDS-PAGE (12%) and transferred to PVDF membranes. Proteins were immunodetected using the respective primary antibodies and HRP-conjugated secondary antibody. Signals were captured with the Multi Genius bio imaging system and signal intensity was analyzed by the GeneTools software (Syngene). Average relative expression levels (±SD) in triplicate experiments were normalized to the level of β-actin.

![Figure 3](image_url) Western blotting of PA28α and DJ-1 in 6 pairs of HBV-infected, well-differentiated HCC tumour and adjacent non-tumour tissues. Proteins from each of the six pairs of tissue samples were separated by SDS-PAGE (12%) and transferred to PVDF membranes. Proteins were immunodetected using the respective primary antibodies and HRP-conjugated secondary antibody. Signals were captured with the Multi Genius bio imaging system and signal intensity was analyzed by the GeneTools software (Syngene). Average relative expression levels (±SD) in triplicate experiments were normalized to the level of β-actin.

Table II. Geneontology analysis of identified proteins.

<table>
<thead>
<tr>
<th>Biological function</th>
<th>Protein</th>
<th>Subcellular localization</th>
<th>Locus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti-apoptosis</td>
<td>Heat shock protein 27</td>
<td>Cytoplasm</td>
<td>7q11.23</td>
</tr>
<tr>
<td></td>
<td>Glutathione S-transferase</td>
<td>Cytoplasm</td>
<td>11q13.2</td>
</tr>
<tr>
<td>Ca<sup>2+</sup> transport/signal transduction</td>
<td>Chloride intracellular channel 1</td>
<td>Nucleus</td>
<td>6p21.33</td>
</tr>
<tr>
<td></td>
<td>Regucalcin</td>
<td>Cytoplasm</td>
<td>Xp11.3</td>
</tr>
<tr>
<td>Metabolism</td>
<td>Inorganic pyrophosphatase</td>
<td>Cytoplasm</td>
<td>10q22.1</td>
</tr>
<tr>
<td></td>
<td>Ketohexokinase</td>
<td>Cytoplasm</td>
<td>2q23.3</td>
</tr>
<tr>
<td></td>
<td>3-Hydroxyanthranilate 3,4-dioxygenase</td>
<td>Cytoplasm</td>
<td>2q21</td>
</tr>
<tr>
<td></td>
<td>Enoyl-CoA hydratase</td>
<td>Mitochondria and peroxisome</td>
<td>19q13.1</td>
</tr>
<tr>
<td></td>
<td>Triosephosphate isomerase</td>
<td>Cytoplasm</td>
<td>12p13.31</td>
</tr>
<tr>
<td>Metastasis</td>
<td>Nucleoside diphosphate kinase (NM23-H1)</td>
<td>Nuclear and cytoplasm</td>
<td>17q21.33</td>
</tr>
<tr>
<td>Structural molecules</td>
<td>Tubulin α-6</td>
<td>Cytoplasm</td>
<td>12q13.12</td>
</tr>
<tr>
<td></td>
<td>Tubulin β-chain</td>
<td>Cytoplasm</td>
<td>6p21.33</td>
</tr>
<tr>
<td>Transport</td>
<td>Apolipoprotein A-1</td>
<td>Secreted protein</td>
<td>11q23.3</td>
</tr>
<tr>
<td>Immune response</td>
<td>Proteasome activator subunit 1 isoform 2</td>
<td>Proteasome complex</td>
<td>14q11.2</td>
</tr>
<tr>
<td>Protein folding/Ras protein signal transduction</td>
<td>DJ-1</td>
<td>Nuclear and cytoplasm</td>
<td>1p36.23</td>
</tr>
</tbody>
</table>

and PA28α were reduced by >3-fold (p<0.01) in tumours, compared to the non-tumour tissues.
In situ expression of PA28α and DJ-1 was also examined in 15 paraffin-embedded HBV-infected G1 tumour and their adjacent non-tumour tissues. A representative immunostaining of DJ-1 and PA28α in paired tissues is shown in Fig. 4. As shown in Table III, all the 15 matched non-tumour tissues showed moderate to strong cytoplasmic staining of both DJ-1 and PA28α. However, PA28α was negatively stained in 6 of 15 tumour tissues (p=0.017), whereas DJ-1 was negatively stained in 8 of 15 tumour tissues (p=0.002). Therefore, DJ-1 and PA28α were down-regulated in most of the tested HBV-infected G1 tumours, compared to their adjacent non-tumour tissues.

Discussion

HCC is one of the most common cancers in the world and causes approximately one million deaths every year. Underlying the early molecular events of tumour onset may help to improve the diagnostic efficiency and develop more effective therapeutic strategies against HCC. With the aid of the proteomic approach integrated with a sophisticated bio-informatic tool and MALDI-TOF MS and MS/MS, we have identified 15 differentially expressed proteins from the HBV-infected G1 tumours. These proteins could be functionally interrelated and linked to the initiation of hepatocarcinogenesis. They were classified into several functional groups including...
metabolism, signal transduction, apoptosis and metastasis (Table II). Although the majority of proteins identified in our study have been reported (4,8,9,21), several other proteins, e.g. DJ-1 and PA28α, have not previously been reported to be differentially expressed in HCC. In this study, we focused on these two proteins and their differential expression was further verified by immunoblotting and immunohistochemistry in a panel of HBV-infected G1 tumours. Although there is a need to further verify the reduced expression of PA28α and DJ-1 in more HBV-infected G1 tumours, and to investigate whether it is the same case in HCV-infected HCC tumours, the abnormal expression of these molecules and the involved biochemical pathways may elucidate, at least in part, the early events causing tumorigenesis in HBV-related HCC.

PA28α is an activator in the immunoproteasome system which has a pivotal role in the control of the immune response. PA28α enhances the generation of class I binding peptides by altering the cleavage pattern of the proteasome and is required for efficient antigen processing. Previous studies showed that PA28α responded to viral or bacterial infection and was up-regulated in the livers of lymphocytic choriomeningitis virus-infected mice (22), and its expression induced the production of HLA-class I in IFN-treated colon cancer cell line DLD-1 (23). The impaired expression of PA28α was also reported in cervical carcinoma lesions (24). However, HER-2/neu overexpression in fibroblasts reduced the level of MHC class I surface antigens by impairing the expression of PA28α and PA28β and other proteasome components, thereby resulting in an immune escape phenotype of oncogene-transformed cells (25). Thus, a reduced level of PA28α may favour the tumour progression. In HCC, a lower level of PA28α, as demonstrated by immunoblotting and IHC (Figs. 2-4), in HBV-infected G1 may indicate an early decreased immune response to transformation and onset of tumour formation. Clinically, we proposed that the level of PA28α could be used as an immunological indicator, together with histological analysis, to assess the hepatocarcinogenesis.

DJ-1 is an integral mitochondrial protein that may have important functions in regulating mitochondrial physiology. It interacts, as an oncoprotein, with Daxx and inhibits apoptosis signal-regulating kinase 1 activity and cell death (26). Several lines of evidence suggested that DJ-1 played a role in tumorigenesis in breast cancer, non-small cell lung carcinoma and prostate cancer (27-29). Moreover, DJ-1 positively correlates with hepatocellular carcinoma lesions (24), as DJ-1 may indicate the abnormal pathophysiological state of mitochondria and mitochondrial disease initiates the tumorigenesis in HBV-infected HCC. As it has been described as a circulating tumour antigen in serum from 37% of patients with breast cancer (27), we will study whether this is the case in HBV-infected HCC to further assess its clinical value as an early diagnostic biomarker in patients.

In summary, we present here the comparative analysis of proteome profiles from HBV-infected G1 tumour and adjacent non-tumour tissues, and identify the differentially expressed molecules which are potentially responsible for the early onset of tumorigenesis and are valuable markers for early diagnosis in patients with HCC. We show the involvement of molecules in a variety of pathways, including signal transduction, metabolism and anti-apoptosis in the early stage of HCC. Although we have only validated our results in a limited number of clinical specimens, the reduced expression of the molecules, PA28α and DJ-1, could be a promising novel biomarker for malignancy detection and diagnosis in HBV-infected HCC.

Acknowledgements

This work was supported in part by the Academic Research Fund (R-179-000-032-112) from the National University of Singapore.

References

