Expression of p16^{INK4a} and MIB-1 in relation to histopathology and HPV types in cervical adenocarcinoma

SUSANNE MULLER1, CARMEN FLORES-STAINO2, BARBRO SKYLDBERG2, ANN-CATHRIN HELLSTRÖM4, BO JOHANSSON3, BJORN HAGMAR6, KENG-LING WALLIN5 and SONIA ANDERSSON1

1Department for Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, 2Laboratory of Clinical Pathology and Cytology, Department of Laboratory Medicine, 3Division of Clinical Virology, Department of Laboratory Medicine, Karolinska University Hospital at Huddinge, Karolinska Institutet, S-141 86 Stockholm; 4Department of Gynecologic Oncology, Radiumhemmet, 5Department of Molecular Medicine and Surgery, Karolinska University Hospital Solna, Karolinska Institutet 171 76 Stockholm, Sweden; 6Institute of Pathology, The National University Hospital, 0027 Oslo, Norway

Received July 24, 2007; Accepted September 20, 2007

Abstract. A total of 101 primary cervical adenocarcinomas were analyzed for the presence of p16^{INK4a} and MIB-1 expression in correlation with the presence of ‘high-risk’ types of human papillomavirus (HR-HPV) and clinical outcome. We found that adenocarcinoma grading showed a significant negative correlation to p16^{INK4a} levels (p=0.001): i.e. we found less intense p16 staining in poorly differentiated tumors than in more highly differentiated tumors as well as a highly significant correlation between HPV infection and higher levels of p16^{INK4a} staining (p=0.00), which was similar for different HPV-types. Tumor suppressor protein p16^{INK4a} levels were higher in HPV positive than in HPV negative tumors. Higher levels of the proliferation marker MIB-1 were associated with poorer outcome. Higher MIB-1 levels were seen in tumors with a lower grade and higher stage at diagnosis. Moreover, MIB-1 levels seem to be higher in tumors due to infection with HPV 16 and 18 compared with HPV 45. MIB-1 may be a helpful marker in grading adenocarcinoma: a high level of expression of MIB-1 indicates a low grade of tumor, whereas high expression of p16^{INK4a} indicates a highly differentiated tumor. Thus, immunostaining for p16^{INK4a} appears to be a useful diagnostic tool for cervical adenocarcinoma.

Introduction

Worldwide, uterine cervical carcinoma is the second most common cancer in women and a major cause of cancer-related mortality (1). Due to a combination of organized and sporadic cytology screening, the incidence of squamous cell carcinomas has steadily decreased over the past four decades. However, the incidence of cervical adenocarcinomas has increased during the same period (2-5). In Sweden, the incidence of cervical adenocarcinomas has doubled during the last four decades (3). Apparently, screening programs have only a limited effect on the early detection of adenocarcinoma (3).

It is well established that human papillomavirus (HPV) is the predominant etiological factor in cervical cancer (6). More than 99% of squamous cell carcinomas harbor oncogenic types of HPV, with HPV 16 being the most frequently encountered (6-10), while the detection rate in adenocarcinoma has varied between 32 and 90% (11-14). A transforming infection leads to malignant dedifferentiation of the infected cell. Transformation is provoked by interaction of the viral oncoproteins of high risk (HR) HPV-E6 and HPV-E7 with different cell cycle proteins. The E7 protein of HR-HPV binds to the tumor suppressor gene Rb and causes a release of the proliferation transcription factor E2F, as well as degradation of pRb. In normal cells Rb blocks the effect of the cyclin-dependent kinase inhibitor p16^{INK4a}. The p16 protein is involved in cell cycle regulation, by acting as a tumor suppressor that inhibits cyclin-dependent kinase 4 and 6, thereby decelerating the cell cycle. It usually acts as a down-regulator of cell proliferation. Prolonged extinction of the pRb gene function by the E7 protein leads to upregulation and thereby overexpression of p16 (8).
Expression of p16 triggers negative feedback control of the pRb protein, thereby further enhancing p16\(^{INK4a}\) levels (15). Thus, increased expression of p16\(^{INK4a}\) represents active expression of the E7 viral oncogene and inactivation of pRb in dysplastic cells and might be a sensitive surrogate marker for such HR-HPV infections (16,17). Overexpression of p16 protein has been demonstrated in squamous cell carcinoma and precursor lesions associated with HR-HPV (18-21). Klæs et al reported that p16 immunostaining may be a powerful tool to identify squamous cell carcinomas and preinvasive lesions (21). Some studies revealed a pronounced overexpression of p16 in cervical adenocarcinoma (22,23).

Differentiation between adenocarcinoma in situ (AIS) and invasive adenocarcinoma of the cervix arising from benign endocervical lesions is difficult. These diagnostic difficulties led to a search for both early and specific markers of endocervical neoplasia.

The MIB-1 antibody directed against the Ki-67 antigen is a marker of mitotically active cells. Ki-67 is a proliferation antigen which is expressed in the nuclei of growing cells. It is present in the G1, S, G2 and M phases of the cell cycle, but not expressed in the G0 phase. It discriminates proliferating from resting cells. Thus, it is an excellent marker of the fraction of growing cells in a cell population and helps to specifically determine the activity of this fraction. The MIB-1 immunostaining pattern is used to assess the proliferation index of a cell population and can be used for grading dysplasia in cervical biopsies (24). Since reduced MIB-1 staining is seen in atrophy and increased in dysplasia (25), it is useful in histopathologically uncertain cases, by helping to distinguish between postmenopausal changes and dysplasia in histological sections. It has been suggested that higher MIB-1 labeling intensity is an indicator of increased proliferation activity associated with unfavorable clinical outcome, increased tumor size and more advanced stage of cancer (26,27).

In the present study, our aim was to evaluate the relation between p16\(^{INK4a}\) and MIB-1 expression in a series of paraffin-embedded biopsies of primary cervical adenocarcinomas and to correlate the staining pattern with clinical parameters.

Patients and methods

Tumor material. The study includes formaldehyde-fixed paraffin embedded tumor tissue specimens from 101 primary cervical adenocarcinomas diagnosed and surgically treated at Karolinska University Hospital-Huddinge between 1992 and 2000 (Table I). All tumor cases were identified from the Swedish National Cancer Registry maintained by the National Board of Health and Welfare. This registry includes all cases of malignant tumors diagnosed histopathologically after 1959, in which each tumor is identified by a topographical and histopathological code. All tumor samples were collected with informed consent and approval from the local ethics committees.

The clinical information for these cases is summarized in Table I and has in part been previously published (28). The histopathological diagnoses were based on WHO criteria. The 101 tumors were classified as cervical adenocarcinomas and all lacked any squamous cell component. The original diagnoses were revised or approved by one pathologist (BH). Eight adenocarcinomas showed only superficial proliferation of the mucosa and no obvious signs of infiltration into the surrounding stroma. These tumors were regarded as ‘in situ adenocarcinomas’ and the remaining 93 tumors as ‘infiltrating cervical adenocarcinomas’. Information on the stage of differentiation was available for 89 of the tumors. Forty-two tumors were well differentiated (41.6%), 35 moderately differentiated (34.7%) and twelve were poorly differentiated (11.9%). The FIGO classification was used for clinical staging of the cervical cancers. Information about clinical stage was available in 76 cases. Most of the patients in our study (56 cases) were classified as stage I (74%), eleven as stage II (14%) and nine as stage III (12%). All patients were retrospectively followed-up from time of diagnosis until January 2007 and disease recurrence and survival data were recorded.

HPV status. Results from HPV screening analyses have been previously published for all cases by Andersson et al (13). Briefly, the analyses were performed on extracted DNA obtained from a 10-μm thick section of paraffin blocks, the

| Table I. Age at diagnosis, stage, histology and HPV among patients with cervical adenocarcinoma. |

<table>
<thead>
<tr>
<th>Age at diagnosis (years)</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-29</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>30-39</td>
<td>24</td>
<td>23.8</td>
</tr>
<tr>
<td>40-49</td>
<td>27</td>
<td>26.7</td>
</tr>
<tr>
<td>50-59</td>
<td>18</td>
<td>17.8</td>
</tr>
<tr>
<td>60+</td>
<td>30</td>
<td>29.7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Stagea</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACISb</td>
<td>8</td>
<td>7.9</td>
</tr>
<tr>
<td>I</td>
<td>56</td>
<td>55.4</td>
</tr>
<tr>
<td>II</td>
<td>11</td>
<td>10.9</td>
</tr>
<tr>
<td>III</td>
<td>9</td>
<td>8.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Histology</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>42</td>
<td>41.6</td>
</tr>
<tr>
<td>Moderate</td>
<td>35</td>
<td>34.7</td>
</tr>
<tr>
<td>Poor</td>
<td>12</td>
<td>11.9</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HPV-negative</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV-positive</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>30</td>
<td>46.9</td>
</tr>
<tr>
<td>18</td>
<td>27</td>
<td>42.2</td>
</tr>
<tr>
<td>45</td>
<td>6</td>
<td>9.4</td>
</tr>
</tbody>
</table>

*aStaging according to the FIGO (Fédération Internationale de Gynécologie et d'Obstétrique) classification for cervical cancer. *bSamples contained only superficial mucosal proliferation not showing obvious signs of infiltration into the surrounding stroma.
preceding section of which had been used for morphological diagnosis. A fragment of 150 bp was amplified from the L1 region with GP5+/GP6+ primers, HPV-typed by direct DNA sequencing and comparison to known HPV sequences using the BLAST algorithm (www.ncbi.nlm.nih.gov/BLAST). Sixty-three of the 101 tumors were found to be HPV positive; 30 tumors were infected with HPV16, 27 with HPV 18 and 6 with HPV 45 (Table I). Mean age at time of diagnosis was 51 years (range 29-85 years). For women with HPV negative tumors mean age was 59 years (range 38-85 years) and for patients with HPV positive tumors, 47 years (range 28-78 years).

Immunohistochemistry for p16 and MIB-1. Immunohistochemical staining was performed with the CINtec® Histology Kit (Code No. K5336, Dako Cytomation, Glostrup, Denmark) following the manufacturer's recommendations and using the Dako Autostainer. This kit contains Tris EDTA buffer (x10), pH 9.0 intended for epitope retrieval. A Coplin jar filled with the diluted epitope retrieval buffer, 1:10 distilled water, was placed in a water bath and heated to 95-99°C. Deparaffinized sections were then incubated for 10 min while maintaining a temperature of 95-99°C. Jars with slides were removed from the water bath and left to cool at room temperature for 20 min, followed by washing for 5 min in Wash Buffer (Code No. S3006, Dako Cytomation) diluted 1:10 with distilled water. The automated procedure began with 1x rinse (1x rinse equals 4 min) in wash buffer diluted 1:10 with distilled water [Wash Buffer (x10), Code No. S3006, Dako Cytomation]. Endogenous peroxidase activity was abolished by incubating slides for 5 min in Peroxidase-Blocking Solution (Dako REAL™, Code No. S2023, Dako Cytomation). Slides were rinsed 1x, after which 200 μl of the primary antibody to the p16INK4a protein clone E6H4 was dropped onto each slide, followed by incubation for 30 min. Slides were rinsed once. Reaction products were visualized by incubating slides for 30 min with the Visualization Reagent (a horseradish peroxidase/goat anti-mouse immunoglobulin-labeled dextran polymer) and, after 2 rinses, incubating for 10 min in a 1:40 solution of DAB chromogen (3.3'-diaminobenzidine) in DAB Buffered Substrate, also from the CINtec® Histology Kit. Slides were then washed in distilled water for 1 min and counterstained for 2 min in Harris Hematoxylin solution diluted 1:2 with distilled water. After 2 min of washing in water, slides were then dehydrated in ethanol and xylen mounted in a water-free permanent mounting medium with mounting glass. Tissue sections containing cervical cancer were used as positive controls for p16INK4a, while negative controls consisted of incubated doublet-slides in the Negative Control Reagent contained in the kit, instead of primary antibodies.

Immune staining was independently evaluated by two observers (CF-S and BH) and was considered positive for p16INK4a when both observers agreed that the nuclei were clearly stained. In addition, cells with a distinct cytoplasmic immunoreaction were scored as positive. Image analysis was carried out as previously described (29). Scoring of the immunohistochemistry results was performed on the basis of both staining intensity and percentage of immunoreactive epithelial cells (30,31). Scoring criteria for p16INK4a, expressed as percentages (%): (negative)-(no expression); <20-weak staining (±); 20-30-weak or moderate staining (+); 31-50-moderate or strong staining (++); >50-strong staining (+++). The scores +, ++ and +++ were considered positive for p16INK4a (30,31).

To detect the Ki-67 antigen we used monoclonal mouse antibody (clone MIB-1). The sections were deparaffinized, rehydrated, and microwave-treated in target retrieval solution diluted 1:10 with distilled water (Dako REAL Target Retrieval Solution (x10) Code No. S2023, Dako Cytomation) for 2x5 min at 500 W. Thereafter slides were subjected to the Autostainer procedure and treated together with the p16INK4a slides as described above. Ki-67 positivity was scored 1-3 in a manner similar to p16, but only with respect to nuclear staining and with attention to heterogeneity in distribution.

Statistical analyses. Data were analyzed using SPSS (Statistical Programs for Social Sciences). Cox regression analysis was performed to evaluate the impact of different biomarkers on survival. ANOVA analysis was used to elucidate the relation between two variables. A p-value of <0.05 was considered statistically significant.

Results

p16INK4a expression in relation to histology. In 97 cases the material sufficed for immunological analysis of the p16INK4a antigen (Figs. 1 and 3). We were able to demonstrate reactivity to this antigen in 75% (6/8) of ACIS cases, in 93% (41/42) of well differentiated cases, in 91% (32/35) of cases with moderately differentiated tumors, and in only 41% (5/12) of cases diagnosed as poorly differentiated cervical adenocarcinomas. A significant negative correlation was found between p16INK4a expression levels (p=0.001) and histological grading; i.e., we found lower level of p16
staining intensity in poorly differentiated tumors than in highly differentiated carcinomas.

We found no correlation between p16INK4a expression and stage of disease at time of diagnosis. Similarly, we found no difference in p16INK4a staining intensity between pre-invasive (ACIS) and invasive cancer within the lesions.

p16INK4a expression in relation to different types of HR-HPV. Table II shows a summary of our results regarding the relationship among the different types of HR-HPV and expression of p16INK4a antigen. A total of 97 tumors were analyzed for p16 expression.

Of the HPV 16 positive samples scored for p16INK4a, 7% were +, 10% were ++ and 83% were ++++. For HPV 18, 4% were +, 15% were ++ and 81% were +++ when scored for p16INK4a. The frequency of different expression levels of p16INK4a in HPV 45 positive cases was as follows: 0% +, 17% ++, and 83% ++++. Regardless of HPV type, none of the HPV positive cases was negative for p16INK4a.

We found a highly significant correlation between HPV infection and higher levels of p16INK4a staining (p=0.00), similar for different HPV types. Thirty-four HPV-negative tumors were also analyzed for p16 antigen. We found that 40% (13/34) did not show any reactivity for p16, whereas the remaining 60% of HPV-negative tumors showed varying reactivity scores; moreover, eight tumors showed strong reactivity.

MIB-1 expression in relation to histology. Ninety-nine cervical adenocarcinomas were evaluated for expression of MIB-1 antigen. We found that reactivity increased with severity of the lesion: 63% in ACIS, 83% among the highly differentiated tumors, 94% in the group with moderate differentiation (Figs. 2 and 3). An interesting observation was that for all cases in which histology showed poor differentiation, expression of MIB-1 was 100%. Carcinoma grading correlated positively with MIB-1 levels (p=0.031);
we found higher MIB-1 levels in more poorly differentiated tumors. Level of reactivity correlated significantly with histology (p=0.004). Thus, we found significantly higher MIB-1 labeling to be associated with higher stage at diagnosis (p=0.038). Lower MIB-1 levels were seen in ACIS compared with invasive cancer, but the difference was not significant (p=0.06).

MIB-1 expression in relation to HR-HPV. The results concerning the correlation of MIB-1 staining and different HR-HPV types are summarized in Table III. In HPV 16-positive cases the frequency of + staining for MIB-1 was 60%, for ++ staining 23% and for +++ staining 0%. In HPV 18-positive cases, 52% showed +, 22% showed ++ and 19% showed +++ for MIB-1 staining. In HPV 45-positive samples, 33% were +, 33% ++ and 17% +++ for MIB-1. In 17% of the HPV 16-positive cases, 7% of the HPV 18-positive cases, and 17% of the HPV 45-positive cases no MIB-1 expression was shown. A significant correlation with high staining levels of MIB-1 for HPV type 16 (p=0.029) and HPV type 18 (p=0.05) was found.

Patient outcome with respect to HPV and MIB-1. The mean age of women with HPV-negative tumors was 59 years (range 38-85 years) and for patients with HPV-positive tumors 47 years (range 28-78 years). HPV infection was significantly correlated with better outcome (survival) in our data (p=0.017). After adjusting for age this level of significance disappeared (p=0.38). p16INK4a staining intensity showed no positive correlation with survival (p=0.03). Levels of the MIB-1 proliferation marker correlated negatively with survival after adjusting for age (p=0.004), indicating poorer outcome for patients with higher MIB-1 levels.

Discussion

Due to significant subjectivity and low sensitivity in interpreting Pap smears and cervical biopsy specimens, an active search is underway for better biomarkers that may prove useful in clinical practice for diagnosing early cervical adenocarcinomas and neoplastic glandular lesions. Further difficulties arise in the staging of adenocarcinoma based on morphology and histology in the absence of a clearly defined preinvasive phase. Moreover, in Pap smear screening, glandular epithelial cells do not exfoliate to the same extent as squamous cells. Furthermore, the highly subjective criteria of histopathological interpretations may lead to equivocal interpretation and therefore a relatively high rate of false-negative and false-positive results. Thus, sensitivity for detecting precursor lesions of adenocarcinoma is much lower than that for squamous cell carcinomas.

Our study analyzed 101 primary cervical adenocarcinomas for the expression of the tumor suppressor protein p16INK4a and for the proliferation marker Ki-67 (MIB-1). The gene for the tumor suppressor protein p16INK4a has reportedly been inactivated in many forms of human cancer, whereas in cervical cancer, a strong nuclear and cytoplasmic overexpression of p16INK4a protein has been observed (33). The overexpression of p16INK4a in cervical cancer and its precursor lesions is thought to result from the functional inactivation of the pRb protein by the HR-HPV E7 oncoprotein (20). It has been suggested that p16INK4a transcription may be directly induced by transcription factor E2F, released from pRb after binding to the HR-HPV E7 protein (15). Klaes et al demonstrated that the use of p16INK4a immunostaining allows precise identification of CIN and cervical cancer lesions in cervical biopsy specimens, and can significantly reduce false-negative and false-positive interpretation in cervical cancer screening (20). Furthermore, expression of p16INK4a may be a predictor of rapid progression, as seen in a longitudinal study (29) and its expression may suggest the presence of transformed cells, even if the lesions appear morphologically normal. The specificity of the staining has been discussed by Murphy et al, who found pitfalls in the method with respect to cervical glandular lesions and showed limited applicability for p16INK4a in regard to such lesions (34). Nielsen et al demonstrated p16INK4a staining in some areas of squamous metaplasia with relatively few Ki-67 positive cells in the same area (35).

Our earlier study showed a correlation between CIN grade and p16INK4a expression levels for squamous cell neoplasia, in which more advanced lesions show stronger reactivity. However, we found some of the HR-HPV positive lesions lacked p16INK4a expression, which might be explained by the regressive nature of these particular cases (36).

Non-dysplastic cells express p16INK4a at a very low level that is not detectable by immunochemical means. In a few cells, however, weak physiological expression can occur during cellular stress; for example, in response to squamous cell metaplasia. In the past, researchers tested p16INK4a as a marker for persistence of HPV infection, an indicator for histo-

<table>
<thead>
<tr>
<th>p16INK4a expression intensity</th>
<th>(%)</th>
<th>(%)</th>
<th>(%)</th>
<th>(%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV 16</td>
<td>5 (17)</td>
<td>18 (60,0)</td>
<td>7 (23)</td>
<td>0 (0)</td>
<td>30</td>
</tr>
<tr>
<td>HPV 18</td>
<td>2 (7)</td>
<td>14 (52)</td>
<td>6 (22)</td>
<td>5 (19)</td>
<td>27</td>
</tr>
<tr>
<td>HPV 45</td>
<td>1 (17)</td>
<td>2 (33)</td>
<td>2 (33)</td>
<td>1 (17)</td>
<td>6</td>
</tr>
</tbody>
</table>

Table II. p16INK4a expression intensity in relation to presence of different HPV types.

<table>
<thead>
<tr>
<th>MIB-1 expression intensity</th>
<th>(%)</th>
<th>(%)</th>
<th>(%)</th>
<th>(%)</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>HPV 16</td>
<td>0 (0)</td>
<td>2 (7)</td>
<td>3 (10)</td>
<td>25 (83)</td>
<td>30</td>
</tr>
<tr>
<td>HPV 18</td>
<td>0 (0)</td>
<td>1 (4)</td>
<td>4 (15)</td>
<td>22 (81)</td>
<td>27</td>
</tr>
<tr>
<td>HPV 45</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td>1 (17)</td>
<td>5 (83)</td>
<td>6</td>
</tr>
</tbody>
</table>

Table III. MIB-1 expression intensity in relation to presence of different HPV types.
logical grading, and as a predictor of progression to cancer (37,38). They found that p16\(^{INK4a}\) levels were also elevated in the majority of HR-HPV related cervical cancers as an indicator of aberrant expression of viral oncogenes. However, the majority of these studies were performed on squamous cell lesions that showed a high sensitivity for the marker.

Our material shows that reactivity to p16\(^{INK4a}\) antigen can be demonstrated in 75% of ACIS cases, 95% of well differentiated lesions, 91% of cases with moderate differentiation and only 41% of cases in which histology showed poor differentiation of cervical adenocarcinomas. Thus, the grade of tumor differentiation was significantly negatively correlated with p16\(^{INK4a}\) expression levels (p=0.001), showing lower p16\(^{INK4a}\) staining intensity in poorly differentiated tumors. One study by Missaoui et al (22) found expression of p16\(^{INK4a}\) in all cases of invasive adenocarcinoma, but the authors did not correlate their findings with degree of tumor differentiation. Lee et al reported that overexpression of p16\(^{INK4a}\) was associated with tumor recurrence and poor clinical outcome in patients with prostate cancer (39). However, Ishikawa et al found no correlation between p16\(^{INK4a}\) expression and subtypes of adenocarcinoma, cancer stage, recurrence, or patient age (40). Our finding that the level of p16\(^{INK4a}\) expression correlates negatively with histological grade may suggest that well differentiated tumors still have a better ability to express tumor suppressor genes, whereas poorly differentiated tumors may have completely lost this ability. Thus, the use of p16\(^{INK4a}\) as a marker will not identify highly dedifferentiated tumors, but may serve as an additional identification tool for more highly differentiated tumors.

Our results concur with those who found that none of the HPV positive tumors, regardless of HPV type, was negative for p16\(^{INK4a}\) and that a highly significant correlation exists between HPV infection and higher levels of p16\(^{INK4a}\) (22). It is notable that all tumors which harbored HPV 45 showed high or moderate expression of p16\(^{INK4a}\). The etiology of cervical adenocarcinoma has yet to be elucidated, and the degree of association with HPV infection varies among different studies. In our previous study we found that 71% of adenocarcinomas were HPV-positive, whereas in this study about 64% of the tumors were HPV-positive. Probably p16\(^{INK4a}\)-impaired gene expression contributes to carcinogenesis in some adenocarcinomas, since 40% of our HPV-negative tumors lacked detectable p16\(^{INK4a}\) overexpression. Loss of functional p16\(^{INK4a}\) may result in uncontrolled cellular proliferation. In contrast, the overexpression of p16\(^{INK4a}\) observed in the majority of HPV-negative cervical adenocarcinomas indicates that HPV-independent mechanisms can also lead to overexpression of p16 in these tumors, unless they are due to an undetected past or present infection.

In our data, the correlation between p16\(^{INK4a}\) staining intensity and survival, which showed worse outcome for higher p16\(^{INK4a}\) levels, was inconclusive. A study by Alfsen et al revealed that high p16\(^{INK4a}\) expression was a strong predictor of poor prognosis in cervical adenocarcinoma (41). In contrast to these findings, another study on squamous cell cancers showed that low p16\(^{INK4a}\) expression was associated with decreased overall, but not disease-free survival (42).

However, HPV-positive tumors seemed to be associated with better prognosis.

Ki-67 (MIB-1) has been suggested as an alternative specific marker of progression in both cytology (43) and histopathology (27,44). Cameron et al suggested combining its use with p16 in histopathology (45).

Some studies have indicated that MIB-1 immunostaining may be useful in distinguishing endocervical neoplasia from benign endocervical lesions. Cina et al described Ki-67 staining as negligible to low in the normal endocervix (46). In our study we found that MIB-1 labeling intensity correlated to both cancer staging and grade, with higher levels of MIB-1 staining associated with higher stage at diagnosis and more poorly differentiated tumors.

We found that MIB-1 levels correlated positively with HR-HPV infection, especially with HPV types 16 and 18. This might indicate a higher proliferating potential for HPV types 16 and 18 compared with HPV 45. It has previously been postulated, that HPV 18 is associated with a more aggressive form of cervical cancer than other HPV types (47). Infection with HPV 16 has also been reported to contribute to a significantly higher risk for progression than infections with other HPV types (48).

We also found a significant positive correlation between p16\(^{INK4a}\) labeling and MIB-1 levels. Our data show that higher levels of MIB-1, representing the Ki-67 proliferation antigen, have a significant association with poorer outcomes. This result is consistent with previous studies of squamous cell carcinomas, which suggested that higher MIB-1 levels were powerful predictors of shorter survival (49). However, according to other investigations, MIB-1 expression seemed to have no clinical value for predicting long-term disease-free survival (50,51).

In conclusion, levels of the tumor suppressor protein p16\(^{INK4a}\) are lower in poorly differentiated tumors and in HPV-positive tumors than in HPV-negative tumors. Higher levels of the proliferation marker MIB-1 are associated with poorer outcome. Higher MIB-1 levels are seen in tumors that had a lower grade and higher stage at time of diagnosis. Moreover, MIB-1 levels seem to be higher in tumors due to infection with HPV 16 and 18 compared with HPV 45. MIB-1 may be a helpful marker for grading endocervical malignancies since high expression of MIB-1 indicates a poorly differentiated tumor, whereas high expression of p16\(^{INK4a}\) indicates a highly differentiated tumor. Thus, immunostaining for both p16\(^{INK4a}\) and MIB-1 appears to be a useful diagnostic tool for cervical adenocarcinoma.

Acknowledgments

The authors wish to express their gratitude to Bo Nilsson for his support with the statistical analysis. This study was supported by the Swedish Cancer Foundation, the Swedish Research Council, the Medical Research Council and Cancer Society in Stockholm, the Stockholm County Council and the Swedish Labour Market Insurance.

References

