
SHOICHI FUMOTO¹, TATSUSHI SHIMOKUNI¹, KEIJI TANIMOTO¹, KEIKO HIYAMA¹, KEIKO OTANI², MEGU OHTAKI², JUN HIHARA³, KAZUHIRO YOSHIDA⁴, EISO HIYAMA⁵, TSUYOSHI NOGUCHI⁶ and MASAHIKO NISHIYAMA¹,⁷

Departments of ¹Translational Cancer Research, ²Environmetrics and Biometrics, ³Surgical Oncology, Research Institute for Radiation Biology and Medicine; ⁴Department of Oncologic Surgery, Gifu University Graduate School of Medicine; ⁵Natural Science Center for Basic Research and Development, Hiroshima University, Hiroshima; ⁶Department of Gastrointestinal Surgery, Faculty of Medicine, Oita University, Oita; ⁷Saitama Medical University International Medical Center, Saitama, Japan

Received September 19, 2007; Accepted November 7, 2007

Abstract. Prior laboratory prediction of individual drug response is of key importance in esophageal squamous cell carcinoma (ESCC), because of the extremely narrow therapeutic index of chemotherapy. However, very few critical markers have been validated to date for ESCC. We previously demonstrated that simultaneous performance of two different types of comprehensive gene expression analysis might provide a way to identify potent marker genes for drug sensitivity from the expression-sensitivity correlation analysis alone, but the screening method appeared not to be always effective. Therefore, we attempted to identify novel potent marker genes using a new statistical analysis of oligonucleotide microarray expression data, based on a two-dimensional mixed normal model, and selected 3 and 7 novel candidates for 5-fluorouracil (5-FU) and cis-platinum (CDDP), respectively. Interferon induced transmembrane protein 1 (*IFITM1*) gene alone, being suggested as a key gene of Wnt pathway, was commonly selected in both screening methods. The transfection analyses and siRNA-mediated knock-down experiments revealed that expression of *IFITM1* closely related to cellular sensitivity to CDDP. Considering the fact that drug sensitivity is determined by multiple genes, we established the best linear model using quantified expression data of a set of all the selected marker genes including *IFITM1*, which converted the quantified expression data of ESCC cell lines into an IC₅₀ value of each drug. In the same way, using the representative genes selected in vitro, we developed highly predictive formulae for disease-free survival (DFS) of the CDDP/5-FU combination after curative operation in esophageal cancer patients (R²=0.917). A two-dimensional mixed normal model can be a powerful tool to identify novel drug-response determinants, and the *IFITM1* gene selected by the statistical method a novel critical biomarker of CDDP response in ESCC.

Introduction

Pharmacogenomic biomarkers hold great promise for the prediction of clinical outcomes of cancer chemotherapy, which would allow the selection of an optimal regimen for each individual (1-3). Extensive efforts to promote such personalized medicine have led to better predictive markers, but enormous tasks remain to be done (4,5). Emerging evidence has revealed that none of the suggested factors alone is consistently critical in drug response, and prediction of a responder for chemotherapy by ‘the snapshot expression profile’ of microarray is increasingly recognized to be more challenging than previously expected (6). Identification of a better prediction marker is urgently needed.

Among a variety of cancers, esophageal cancer is likely one of the most important targets of individualized chemotherapy. For esophageal cancer, chemotherapy is considered to be a most potent treatment option to improve the poor prognosis. However, the therapeutic index of chemotherapy is extremely narrow, and the optimal therapy remains unclear (7,8). Numerous patients undergo a regimen without benefit. These facts encouraged us to focus on the biomarker of individual response to chemotherapy for the disease.

The most difficult obstacle for the prediction of therapeutic efficacy is an intricate mechanism of drug sensitivity: multiple factors are involved in drug response mechanisms,
key determinants of the response significantly vary among
dividuals, and they intricately interact. The multifactorial
mechanisms limit the prediction of individual drug response
by any single marker including a ‘snapshot expression profile’
of microarray (6,9,10). Therefore, we have attempted to
select a set of key marker genes using DNA microarray in vitro
and developed a prediction system for clinical chemothera-
peutic response through multiple regression analysis using
expression data of the selected genes in several cancers, such
as gastric, ovarian, and esophageal cancers (11-13). The
observed predictive values of fixed formulae suggested that
our attempts are likely a practical and potent approach to
better prediction. The genes selected by the expression-
sensitivity correlation analysis were more correlative with
drug efficacy than those previously proven as drug-
sensitivity determinants, and multiple regression analysis
might work well to embrace the variable expressions of the
selected genes and arrange them in order to predict the
efficacy of the drugs. Nevertheless, in certain selected genes, the functional significance of drug sensitivity determinant in vitro was not fully proven indicating that there exist more significant prediction marker genes. DNA chip technology enables us to overview a huge number of gene expressions simultaneously and can provide a variety of candidates for novel prediction markers, but still there is no definitive way to determine the critical ones from such a huge number of candidates.

In this study, focusing on esophageal cancer and 2 key chemotherapeutic agents for the advanced disease, cis-platinum (CDDP) and 5-fluorouracil (5-FU), we attempted to select more powerful sensitivity markers using a new statistical method, a two-dimensional mixed normal model proposed by Ohtaki et al (14), and demonstrated for the first time that interferon induced transmembrane protein 1 (IFITM1) gene was possibly a key determinant of the CDDP sensitivity. We also found that a set of the selected genes including IFITM1 allowed us to predict therapeutic responses to CDDP chemotherapy both in vitro and clinically in esophageal cancer. These findings may contribute to promoting study of individualized chemotherapy.

Materials and methods

We applied microarray analysis and cytotoxic assay data of
ESCC cell lines obtained in the previous study (12) to the
new statistical analysis based on a two-dimensional mixed
normal model (14) to explore the gene critically responsible
for the 5-FU/CDDP efficacy with the following biological
evidence.

Chemicals. 5-FU was kindly provided by Kyowa Hakko
Kogyo Co., Ltd. (Tokyo, Japan). CDDP was generously
provided by Bristol-Myers K.K. (Tokyo, Japan). All other
chemicals were of analytical grade and were purchased from
Wako Pure Chemicals (Osaka, Japan) and Sigma (St. Louis,
MO, USA).

Cells. The 20 KYSE human esophageal squamous cell
carcinoma cell lines, (KYSE-30, -140, -150, -170, -180, -200,
-220, -350, -410, -450, -510, -520, -590, -770, -850, -890,
-1170, -1190, -1250, and -2270) were prepared as previously
described (12). All cell lines were cultured in RPMI-1640
medium (Life Technologies, Inc., Grand Island, NY) containing 10% heat-inactivated fetal bovine serum (FBS; BioWhittaker, Verviers, Belgium) at 37°C in a humified atmosphere of 5% CO₂ and maintained in continuous
exponential growth by passage every 3 days. For gene
expression analysis, exponentially growing cultured cells
were collected and stored at -80°C until use.

Patients and human tissue sample. ESCC tissue specimens
were collected at surgery from chemo-naïve patients with
advanced esophageal cancer (TNM/UICC classification:
Stage III or IV) as previously described (12). The patients
received curative esophagectomy with the subsequent 5-FU/
CDDP combination chemotherapy as the post-operative
adjuvant chemotherapy, and their prognosis and follow-up
until August 1st, 2007 are presented. The patients median age
was 61, range 49-78 years) with performance status (World
Health Organization, WHO) 0-2 without significant baseline-
laboratory abnormalities, and life expectancy was estimated
at >3 months. 5-FU was given by continuous intravenous
administration at a dose of 250 mg/m² for 28 days or 5-day
continuous-infusion of 500 mg/body/day per week for 28
days, as a combination regimen with cisplatin at an extremely
low dose of 3 mg/m² or 10 mg/body/day. Total administered
doses of 5-FU and CDDP ranged between 2,625 and 10,500
mg (median: 10,000 mg, mean: 8,912 mg), and between 26
and 200 mg (median: 200 mg, mean: 143 mg), respectively.
CT (computed tomography) scanning was performed every
one or two months to evaluate disease-free survival (DFS).
Among the 18 tumor samples obtained from 17 patients, 14
tumors obtained early were used to yield the prediction
formulae and 4 subsequently obtained tumors were used as
test samples. Written informed consent was obtained from all
patients, and the protocol was approved by our institutional
ethics committee. The collected tumor specimens were stored
at -80°C until use.

Cytotoxic assay. Drug-induced cytotoxicity was evaluated by
conventional MTT dye reduction assay as previously reported
(12). Briefly, 4x10³/well cells were seeded in 96-microwell
plates (Nunclon, Nunc, Roskilde, Denmark) RPMI-1640 with
10% FBS. After 24 h of incubation, the medium was replaced
and cells were exposed to the indicated drug concentrations
for 72 h, after which 10 µl of 0.4% MTT reagent and 0.1 M
sodium succinate were added to each well. After 2 h of
incubation, 150 µl of DMSO was added to dissolve the purple
formazan precipitate. The formazan dye was measured
spectrophotometrically (570-650 nm) using MAXline™
microplate reader (Molecular Devices Corp., Sunnyvale, CA).
The cytotoxic effect of each treatment was assessed by IC₅₀
value (inhibitory drug concentration of 50% cell growth: drug
congestion of 50% optical density of control).

Extraction and purification of RNA. Total RNA of cell pellets
or frozen tissue samples was prepared using Qiagen RNeasy
mini kit (Qiagen, Inc., Valencia, CA). The quality of the RNA
was checked using Agilent Technologies 2100 bioanalyzer
(Agilent, Palo Alto, CA) and tissue samples with poor quality
were excluded.
Screening of candidate genes using data of comprehensive gene expression analyses. Gene expression data of 20 KYSE esophageal cancer cell lines analyzed by CodeLink expression bioarray system (GE Healthcare, Tokyo, Japan) (12) were applied to the new statistical model. The oligonucleotide microarray data were registered to the gene expression Omnibus under GE accession no. GSE 2447 (http://www.ncbi.nlm.nih.gov/geo/). On these data, a two-dimensional mixed normal model, in addition to the rank correlation analysis, was applied to select the most potent prediction marker genes from the large number of candidates. The rank correlation coefficient (Spearman's correlation coefficient) is well-known as a robust statistical index for quantifying degrees of correlation between ranks of two sets of measurements; it is useful even when data are contaminated with certain outliers.

The statistical significance was evaluated with P-value obtained from the Monte Carlo method by generating null distribution under the hypothesis that there was no correlation between any two sets of measurements. Two-dimensional mixed normal model is a statistical method proposed by Ohtaki et al., which can effectively adjust the microarray data to facilitate comparisons through eliminating systemic biases in the measured expression levels, referred to as normalization, and identify differentially expressed genes between two cells showing different biological behaviors based on the functional status of the genes (13-15).

The probability of the gene being differentially expressed between the query and the reference samples, i.e., the status of the gene is (‘on’, ‘off’) or (‘off’, ‘on’) between them, was obtained as a posterior probability. The terms ‘on’ and ‘off’ are used to express the functional status of a gene. If a gene actually expressed yielding its product (i.e. ‘mRNA’) as the true signal, the status is ‘on’; otherwise (i.e., mRNA is not in the sample), it is ‘off’. When the status of a gene is ‘off’, the observed measurement reflects only the amount of systematic error and measurement error.

Real-time RT-PCR (reverse transcription-polymerase chain reaction). Total RNA (2 μg) extracted from each cell line, gene-transfected cell clone, or cancer tissue was reverse-transcribed using High-Capacity cDNA Archive™ kit (Applied Biosystems), and then 200 μl aliquot of the cDNA (equivalent to 10 ng total RNA) was subjected to real-time RT-PCR using ABI Prism™ 7900HT sequence detection system (Applied Biosystems) to estimate the expression levels of the candidate genes. Primer and probe set was provided by TaqMan™ Gene Expression (Applied Biosystems) except for the internal control. Total RNA from each cell line was reverse-transcribed into cDNA. Each reaction was carried out in triplicate and averaged. The relative gene expression assays (Applied Biosystems) except for the internal control (Pre-Developed TaqMan assay reagents; Applied Biosystems) and KLRC2 (Roche Universal ProbeLibrary™; Roche Diagnostics, Basel, Switzerland). Each reaction was carried out in triplicate and averaged. The relative gene expression level was calculated as a ratio to GAPDH (glyceraldehyde-3-phosphate dehydrogenase) gene expression level, and the genes whose expression levels statistically correlated again with sensitivity to 5-FU or CDDP were further selected as prediction marker candidates.

Construction of plasmid. The cDNAs derived from an EB virus transformed B cell line C123 (for IFITM1) established from a healthy donor and a fibroblast strain MJ90 (for B4GALT5, UGCC and XBP1) were used to amplify each gene. The sequence of each primer for amplification was: B4GALT5: forward, 5′-GGAGATCTATTGCGCCGCGCGGGTCT-3′, reverse, 5′-GAAGATCTTCTCTTCGCTGTTCCCTG-3′; UGCC: forward, 5′-TGAATTCATTGCGGCTGCGTGCTGGAAGGTCTGC-3′, reverse, 5′-GAAGATCTCTGCTGTTGGGCGCCGCCCG-3′, reverse, 5′-GAAGATCTCAGTATTGTTCATTCTCC-3′; XBP1: forward, 5′-TGAATTCATTGCGTGTCGCTGTTGGGCGCCGCCCG-3′, reverse, 5′-GAAGATCTGAGTATTGTTCATTCTCC-3′; IFITM1: forward, 5′-GAATTCCTGAGTACACAAAGAGGAGAACTAGA-3′, reverse, 5′-GAAGATCTTATGGCGCGGCCTACTAGTA-3′.

These sequences of the forward and reverse primers contained restriction sites of EcoRI and BglII, respectively. PCR reaction mixture (50 μl) containing 0.2 μg of cDNA, 5 μl of 2 mM each dNTP, 0.3 μM of each primer, and 1 U KOD-Plus-DNA polymerase (Toyobo, Osaka, Japan) was subjected to initial incubation at 94°C for 2 min followed by 38 amplification cycles, each cycle consisting of denaturation at 94°C for 40 sec, annealing at 58°C for XBP1 or 60°C for B4GALT5, UGCC, IFITM1 for 60 sec, and extension at 68°C for 1 min for UGCC, XBP1, IFITM1 or 1.5 min for B4GALT5. After digestion with EcoRI and BglII, the PCR products and the expression vector p3xFLAG-CMV10 (Sigma) were ligated using the Quick Ligation™ kit (New England BioLabs) according to the manufacturer’s manual and transformed into E. coli XL1-Blue (for IFITM1) or DH5α (for B4GALT5, UGCC and XBP1). All constructs were confirmed by DNA sequencing.

Transfection and selection of stable cell pools. The plasmid expressing each gene was linearized by a single cut with a restriction enzyme Scal (for UGCC, XBP1, and IFITM1) or ApaLI (for B4GALT5), and then transfected into 2 human esophageal squamous cell carcinoma cell lines, KYSE-170 and -2270 using TransIT®-LT1 reagent (Mirus Bio Corporation, USA) according to the manufacturer’s manual. Transfected cells were cultured in RPMI-1640 medium with 10% FBS containing 150 and 500 μg/ml of G418 for KYSE-170 and -2270, respectively, from 24 h after transfection for approximately one month. The established cell lines were maintained under G418-free conditions for at least one week before use to avoid any effects of G418. mRNA expression level of each gene in transfected cells were measured by real-time RT-PCR.

Knock-down analysis of IFITM1 using siRNA. IFITM1-specific siRNA (Silencer® pre-designed siRNA; sense: GAU AAUACAGGAAACACCGGtt, antisense: CCGUUUUUCUGUUAUUCGtt) and negative control siRNA (Silencer negative control siRNA) were purchased from Ambion (USA) and transfected into IFITM1 overexpression cells using the siPORT™ NeoFX® (Ambion) according to the manufacturer’s manual. A mixture of 4x10^5 cells, 0.5 μl of NeofX, 0.5 μl of 2 μM siRNA, and serially diluted chemicals were seeded in 96-microplates and incubated at 37°C in a humidified 5% CO2 incubator for 72 h, and then cytotoxicity was measured by MTT assay. Efficacy of siRNA-mediated knock-down of IFITM1 mRNA was evaluated in the cells exposed to siRNA without chemicals for 24 h by real-time RT-PCR.
Multiple regression analysis. The relationship between y_i (response value of i-th individual) and $x_{i1}, ... , x_{ip}$ (explanatory variables) is formulated in the linear model $y_i = \theta_0 + \theta_1 x_{i1} + \theta_2 x_{i2} + ... + \theta_p x_{ip} + \epsilon_i$, where θ_0 is constant and ϵ_i denotes error term. Trimmed least squares regression (TLSR) was performed to determine a set of effective genes that would satisfy the value of IC$_{50}$: $(\theta_0, ... , \theta_p)$ were estimated from the data $[y_i; (x_{i1}, ... , x_{ip})]$ when we used gene expression levels and cellular sensitivity to drugs (IC$_{50}$ value for each drug), respectively as the explanatory and the response variables. The TLSR is a robust regression method based on an extended algorithm of least median squares regression (LMSR) by Rousseeuw, which explores models using masked samples with large residuals (16). We used the software, NLReg, developed by Ohtaki (http://apollo.rbm.hiroshima-u.ac.jp/), which implemented the robust regression analysis. Outliers were identified by referring to the value of AIC (Akaike's information criterion) for each sample or checking residuals graphically, and a set of effective genes that satisfied the value of IC$_{50}$ in vitro or DFS for clinical samples was explored.

Statistical analysis. Mathematical methods to process the microarray data and predict the drug efficacy are described above. Other statistical tests were performed using StatView® version 5.0 software (SAS Institute Inc., Cary, NC, USA), and Student's t-test was used to determine the P-value.

Results

Re-evaluation of the previously selected candidate marker genes by the novel statistical model. We previously demonstrated that simultaneous performance of two different types of comprehensive gene expression analysis (conveniently named as a two-array screening) might provide a way to identify potent marker genes for drug sensitivity from the expression-sensitivity correlation analysis alone, and a set of
the selected genes were likely better drug-sensitivity markers in esophageal cancer (12). To re-evaluate the potential of these genes as drug sensitivity determinants, we applied the two-dimensional mixed normal model to these previously selected 7 marker genes (XBP1, B4GALT5, and UGCG for 5-FU and IFITM1, SIPAIL2, SAPS2, and ARFRP1 for CDDP) and calculated the sum of ‘probability of heterogeneity’ (‘sumPH’ in Table IA: when expression level of a gene in the cell line with median IC50 is between those of maximum IC50 and minimum IC50, sumPH of the gene = [probability of heterogeneity in a cell line with maximum IC50] + [probability of heterogeneity in a cell line with minimum IC50]; when expression level of a gene in the cell line with median IC50 is not between those of maximum IC50 and minimum IC50, sumPH of the gene = [probability of heterogeneity in a cell line with maximum IC50] - [probability of heterogeneity in a cell line with minimum IC50]) as drug sensitivity determinants. The calculated sumPH of the 5 genes selected by two-array screening except IFITM1 and SIPAIL2 were too low to estimate them to be a potent predictor in the new screening. Among them, 3 possible marker genes for 5-FU (XBP1, B4GALT5, and UGCG) showed extremely low probability of heterogeneity (Table IA), and in fact revealed not to have functional significance as 5-FU-sensitivity determinants by transfection analysis in KYSE-170 cells (Fig. 1).

Novel prediction marker genes selected by a combination of rank correlation analysis and novel statistical model. A two-dimensional mixed normal model may have certain advantages in selection of potent marker genes than the previously employed selection methods. Therefore, we attempted to select more reliable prediction marker genes by combining the mathematical model with rank correlation analysis. The normalized expression level of each gene in oligonucleotide array analysis and the IC50 for each drug in 20 esophageal cancer cell lines were ranked and the correlation between ranks of the two sets of measurements was evaluated. The rank correlation analysis showed that 124 and 272 genes closely correlated with cellular sensitivity to 5-FU and CDDP, respectively, in their expression levels (P<0.01), although any genes widely known as CDDP sensitivity determinants were not included. We then applied a two-dimensional mixed normal model to explore differentially expressed genes between the most resistant and sensitive cells to 5-FU or CDDP through the comparison to the cells with median IC50 for each drug, and selected 5 and 12 novel candidates for 5-FU and CDDP, respectively (sumPH ≥1.0).

Real-time RT-PCR analysis on these 17 candidate genes confirmed that 10 showed significant correlation between drug sensitivity and their expression levels (P<0.05 in the linear regression analysis), indicating that these 10 genes are reliable potent candidates as novel prediction markers: PTPN6 (protein tyrosine phosphatase, non-receptor type 6), MAP3K8 (mitogen-activated protein kinase kinase kinase 8) and RSRC2 (arginine/serine-rich coiled-coil 2) for 5-FU, and C5orf13 (chromosome 5 open reading frame 13), NSBP1 (nucleosomal binding protein 1), IFITM1 (interferon induced transmembrane protein 1), LRIG1 (leucine-rich repeats and immunoglobulin-like domains 1), RPP25 (ribonuclease P 25 kDa subunit), EDN1 (endothelin 1), and CCDC3 (coiled-coil domain containing 3) for CDDP (Table IB). The 7 genes selected by microarray analysis but excluded by real-time RT-PCR were NDUFA4L2 and PYCARD for 5-FU and GSTA4, GRHL3, FOXC2, SERPINB2, and KLRC2 for CDDP.

IFITM1 identified as a key marker gene. Whereas all of the selected genes might be potent predictors of 5-FU- and CDDP-induced cytotoxicity, their functions and the usefulness of the employed selection method remain to be elucidated. Both the two-array screening previously employed and the two-dimensional mixed normal model in the present study commonly selected IFITM1 to be a potent predictor of CDDP efficacy with a high correlation coefficient and a sufficient
probability of heterogeneity (Table I), which led us to focus on this gene as the most plausible key marker gene of CDDP response in esophageal cancer. The transfection of IFITM1 into human esophageal squamous cell carcinoma cell lines KYSE-170 and -2270 revealed that expression of IFITM1 closely related to the cellular sensitivity to CDDP: the expression levels in 6 stable KYSE-170 transfectants were inversely correlated with the IC_{50} values for CDDP (P<0.01) (Fig. 2A). This inverse correlation was also observed in KYSE-2270 (data not shown). We further confirmed that repression of IFITM1 by siRNA significantly increased cellular resistance to CDDP in KYSE-170 and -2270 (Fig. 2B): The

Table II. In vitro prediction formulae for 5-FU and CDDP: Explanatory variables (x_{ip}) and estimated coefficients (\theta_p).

A, Formulae using expression data of the previously proposed marker genes

<table>
<thead>
<tr>
<th></th>
<th>5-FU</th>
<th>CDDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>\ln [XBP1]</td>
<td>87.833</td>
<td>-56.174</td>
</tr>
<tr>
<td>\ln [B4GALT5]</td>
<td>76.933</td>
<td>32.861</td>
</tr>
<tr>
<td>\ln [UGCG]</td>
<td>94.528</td>
<td>-155.610</td>
</tr>
</tbody>
</table>

B, Formulae using expression data of the genes presently selected by the two-dimensional mixed normal model

<table>
<thead>
<tr>
<th></th>
<th>5-FU</th>
<th>CDDP</th>
</tr>
</thead>
<tbody>
<tr>
<td>\ln [PTPN6]</td>
<td>120.160</td>
<td>-30.619</td>
</tr>
<tr>
<td>\ln [MAP3K8]</td>
<td>88.292</td>
<td>25.605</td>
</tr>
<tr>
<td>\ln [RSRC2]</td>
<td>75.948</td>
<td>-78.540</td>
</tr>
<tr>
<td>\ln [C5orf13]</td>
<td>-33.566</td>
<td>-3.597</td>
</tr>
</tbody>
</table>

[], expression level of indicated gene.
reduced expression levels (36 and 50% in KYSE-170 and -2270, respectively) closely correlated with the observed increase of IC\(_{50}\) values for CDDP (20 and 33% in KYSE-170 and -2270, respectively).

Prediction of in vitro sensitivities to 5-FU and CDDP using each set of the selected genes. IFITM1 appeared to be one of the key determinants of CDDP sensitivity, thus a powerful predictor of CDDP sensitivity, which suggested that the two-dimensional mixed normal model likely worked well to identify novel marker genes from numerous candidates. The selection method also suggested that 5-FU and CDDP might have plural sensitivity marker genes other than IFITM1.

Selection of a set of truly significant genes for sensitivities to drugs would allow us to predict the therapeutic response to the agents more accurately, at which point we could understand their interplay in the expression. Therefore, we performed multiple regression analysis to compose such prediction models for the *in vitro* activity of 5-FU and CDDP using expression data quantified by real-time RT-PCR of the 2 sets of selected genes (novel and previously suggested genes), and compared the potential for the prediction. The attempts provided 2 prediction formulae each for 5-FU and CDDP, to show the highest fitness, and the observed correlation coefficient (\(R\), 0.907 vs. 0.829 for 5-FU; 0.942 vs. 0.907 for CDDP for novel and previously suggested genes, respectively) indicated potent predictive values of the fixed formulae (Table II and Fig. 3). The P-value of IFITM1 was lowest among those of the other selected genes in the novel prediction formulae for CDDP sensitivity (\(P<0.0001\)), suggesting the significant role of IFITM1 in the prediction.

Prediction of clinical response to 5-FU/CDDP combination therapy using each set of the representative genes. Expression analysis of a set of the key drug sensitivity genes for 5-FU and CDDP allowed the prediction of therapeutic response to the combination. The suggested potential in the prediction models of *in vitro* drug sensitivity encouraged us to construct a prediction model of clinical response, i.e., disease-free survival (DFS), to 5-FU/CDDP combination chemotherapy, in a similar manner using the same genes selected *in vitro* for both drugs. We used 14 tumor specimens from 18 collected specimens, and developed clinical prediction models. Since the number of samples was too small to make a model formula using all selected genes, we chose only 3 genes each including IFITM1 from the 7 genes selected by previous two-array screening and from the 10 genes selected by the present two-dimensional mixed normal model, so that the best prediction models can be obtained using the limited number of genes: B4GALT5, IFITM1, and ARFRP1 from the former...
and RSRC2, C5orf13, and IFITM1 from the latter (Table III). Multiple regression analysis using 14 data sets of gene expression quantified by real-time RT-PCR and clinical response provided 2 prediction formulae for DFS that showed the highest fitness for each set of prediction marker genes. To confirm the predictive accuracy of the fixed formulae, we examined an additional 4 tumor samples and predicted the DFS (fitted value) by the developed formulae using their quantified expression data. Despite the limited number of samples, the DFS was more reliably predictable in the latter model using the presently selected genes (R of the model: 0.917, test sample: 0.747, Fig. 4). However, none of the selected genes alone could predict the DFS. We also attempted to establish other prediction formulae using several different sets of marker genes, including the sets of genes related to sensitivity to either 5-FU or CDDP alone, but the DFS was not precisely predicted by any other formulae.

Table III. Prediction formulae for disease-free survival of 5-FU/CDDP combination: Explanatory variables (xip) and estimated coefficients (θp).

<table>
<thead>
<tr>
<th>xip</th>
<th>θp</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln [B4GALT5]</td>
<td>-0.759</td>
<td>0.1363</td>
</tr>
<tr>
<td>ln [IFITM1]</td>
<td>-0.625</td>
<td>0.0404</td>
</tr>
<tr>
<td>ln [ARFRP1]</td>
<td>1.267</td>
<td>0.0278</td>
</tr>
</tbody>
</table>

B. Formulae using expression data of the genes presently selected by the two-dimensional mixed normal model

<table>
<thead>
<tr>
<th>xip</th>
<th>θp</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>ln [RSRC2]</td>
<td>3.750</td>
<td>0.0003</td>
</tr>
<tr>
<td>ln [C5orf13]</td>
<td>-1.664</td>
<td>0.0031</td>
</tr>
<tr>
<td>ln [IFITM1]</td>
<td>0.390</td>
<td>0.1352</td>
</tr>
</tbody>
</table>

[], expression level of indicated gene.

Figure 4. Prediction of disease-free survival (DFS) after surgery followed by 5-FU/CDDP combination therapy in patients with ESCC, by fixed prediction formula using expression data of a set of 3 possible marker genes for 5-FU or CDDP. Formula was fixed using the variable expression data of the possible marker genes selected by the previous two-array screening method (A) and the present two-dimensional mixed normal model (B). A total of 14 independent data sets, expression levels of the selected genes in tumor specimen and clinical response (DFS, day) data in 14 patients, were used (●, analyzed sample data; ○, a masked outlier), and another 4 sets of data were used to confirm the predictive value (circle within a circle). The vertical and horizontal axes show observed value and fitted value, respectively.

Discussion

Pharmacogenomics is a large-scale systematic approach using genomic technologies such as gene sequencing, statistical genetics, and comprehensive gene expression analysis to discover drug response determinants. Nevertheless, very few critical prediction markers of drug response have been validated (1-6,9-13). New technologies have created a massive increase in the amount of genomic information, but most of the genomic information are uncharacterized and further no definitive way to exploit the full power of a global perspective, a way to identify drug response determinants from a huge number of candidates, has yet been established (11-13).

In the present study, we attempted to identify more potent marker genes using a new statistical analysis based on oligonucleotide microarray expression data, a two-dimensional...
mixed normal model, and selected 3 (PTPN6, MAP3K8 and RSR2) and 7 novel candidates (C5orf13, NSBP1, IFITM1, LRIG1, RPP25, EDN1, and CCDC3) respectively for 5-FU and CDDP, as novel sensitivity marker genes in ESCC. We had previously suggested several possible marker genes selected by a two-array screening method using two different types of comprehensive gene expression analysis in esophageal cancer (12). We chose IFITM1 as the most potent candidate for a CDDP biomarker because the gene was commonly selected in both previously and newly performed screening methods, and demonstrated its functional significance as a CDDP-sensitivity determinant through the transfection analyses and siRNA-mediated knock-down experiments.

Our additional attempt to predict in vitro response of 5-FU and CDDP using expression data of a set of all selected marker genes including IFITM1 revealed that expression of IFITM1 was of key importance also in the prediction formulae for CDDP. Furthermore, the prediction formula for clinical response (DFS) of 5-FU/CDDP combination demonstrated that a set of key drug sensitivity genes for 5-FU and CDDP allowed the prediction of therapeutic response to the combination therapy. Utility-confirmation analyses using other test samples appeared to show that the formulae using a set combination therapy. Utility-confirmation analyses using other test samples appeared to show that the formulae using a set of representative 3 novel marker genes could predict DFS, despite the limited number of samples to obtain significant P-value. These results indicate that our two-dimensional mixed normal model may be effective in identifying novel drug-response determinants, and IFITM1 selected by the new screening method can be one of the powerful biomarkers of CDDP activity in ESCC.

Our first application of a two-dimensional mixed normal model to the selection of drug response marker was for TXL/CDDP therapy in ovarian cancer patients, and the attempt suggested its significant potential (13): the differences in expression levels indicated by the mathematical model were highly confirmative in subsequent real-time RT-PCR analysis, the selected 8 novel genes were more correlative with corresponding drug sensitivity than the 5 known genes in quantified expression levels, and a combination of the 8 genes alone could work well in the prediction of clinical response to platinum/TXL combination chemotherapy.

Our data in the present study support the idea that the statistical method may identify differentially expressed genes between two cell samples with different biological behaviors based on the functional status of the genes. We found that 5 of 7 genes selected by the previous methods showed extremely low probability of heterogeneity and were not estimated to be potent predictors in the novel selection method, and the transfection analyses of the 3 possible marker genes for 5-FU sensitivity (XBP1, B4GALT5, and UGCC) revealed that none of them acted at all as the drug sensitivity determinant. Recently, serious mistakes and misunderstandings in published microarray studies to develop classifiers for tailoring individualized treatments have been pointed out (6,17).

Taken together the fact that most of our novel genes selected by the new method were not evaluated as correlative genes by previous two-array screening, cDNA- and oligo-nucleotide-microarray screening, the unsettled expression data of the relatively earlier developed technology might confuse the selection. Nevertheless, all of the observed data in this study leads to the proposal that a two-dimensional mixed normal model would provide certain advantages in the selection of significant genes.

The biological functions of the novel 10 selected genes are only slightly known, but several reports suggest their possible roles in drug sensitivity: IFITM1 encodes interferon-induced transmembrane protein 1, which is now known as a key factor of Wnt pathway. The protein plays an important role in the antiproliferative activity of interferons and recent reports have suggested that the gene expression may relate to the tumor response to several anticancer therapies (18-23).

The number of reports for IFITM1 is gradually increasing, suggesting the importance of the gene in variable drug-resistance and supporting our findings. PTPN6 encodes a member of the protein tyrosine phosphatase (PTP) family, and was suggested to participate in hematopoietic differentiation. The loss of protein was also shown to enhance JAK3/STAT3 signaling and decrease proteasome degradation of JAK3 and NPM-ALK in ALK- anaplastic large-cell lymphoma (24,25).

MAP3K8 encodes a member of the serine/threonine protein kinase family, which can activate both the MAP kinase and JNK kinase pathways, and there are several reports that show its functional role in cancer and action on IκB kinases, thus the nuclear production of NF-xB (26-28).

For RSR2, recent studies have suggested that its product possibly act as a tumor suppressor and a prognostic factor in ESCC (29). The C5orf13 product was shown to play a role in regulation of glioma cell migration and TGFB activation (30,31); and the NSBP1 gene, which encodes a nucleosomal binding and transcriptional activating protein, is related to the HMG-14/17 chromosomal proteins (32,33).

The LRIG1 product is known to maintain epidermal stem cells in a quiescent non-dividing state since its down-regulation can trigger cell proliferation. The potential as a prognostic predictor in several cancers was also documented (34-36). RPP25 encodes protein subunit of human RNase MRP and RNase P endonucleases, belonging to the Alba superfamily of nucleic acid binding proteins (37).

The EDN1 product is known as a vasoconstrictor peptide produced by vascular endothelial cells and relates to a variety of cancers (38-40), although the function of CCDC3 product is still unknown. All of these genes may play important roles in the drug-induced cytotoxicity, and possibly be a more potent predictor of CDDP-induced antitumor activity than IFITM1.

The detailed molecular mechanisms responsible for CDDP and 5-FU action are now under our investigation: since biological behavior and the molecular basis of cancer differ significantly according to its origin, we are first studying them focusing on ESCC, and then will expand the research area to other types of cancer. These studies may clarify the reason why CDDP marker genes in ovarian cancer selected in the first study using a two-dimensional mixed normal model significantly differed from those in ESCC selected in this second study.

In summary, we attempted to identify more potent marker genes of drug response in ESCC using a new statistical analysis of the oligonucleotide microarray expression data based on the two-dimensional mixed normal model, and
provided 3 and 7 candidates respectively for 5-FU and CDDP, as novel sensitivity marker genes. Among them, we demonstrated that IFITM1 was of key importance in the prediction for CDDP through its transfection analysis and siRNA experiments. Since the multifactorial mechanisms limit the prediction of individual drug response by any single marker, we established the best linear model both in vitro and in vivo (prediction for clinical DFS) using quantified expression data of a set of the selected marker genes including IFITM1, and confirmed their potent predictive values. The work may contribute to promoting personalized medicine with novel proposal that a two-dimensional mixed normal model and/or the combined usage with other screening methods possibly improves the heretofore limited utility of microarray analysis in the selection of significant genes, in which IFITM1 can be one of the critical prediction markers of CDDP response in ESCC.

Acknowledgements

We thank Dr Yutaka Shimada (Kyoto University) for his kind supply of 20 KYSE cell lines and helpful advice on the culture. Part of this study was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan and the Ministry of Health, Labour and Welfare of Japan and Grant-in-Aid for University and Industry Collaboration. Part of this work was carried out at the Analysis Center of Life Science, Hiroshima University.

References