Inhibition of T cell and natural killer cell function by adenosine and its contribution to immune evasion by tumor cells (Review)

DAVID W. HOSKIN1,2, JAMIE S. MADER1, SUZANNE J. FURLONG2, DAVID M. CONRAD2 and JONATHAN BLAY3

Departments of 1Pathology, 2Microbiology and Immunology, and 3Pharmacology, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia B3H 1X5, Canada

Received August 20, 2007; Accepted October 18, 2007

Abstract. The resistance of many human cancers to immune-based therapies, including adoptive immunotherapy and the administration of therapeutic cancer vaccines, has been attributed to tumor-associated immune suppression, due in part to immunosuppressive molecules located within the tumor microenvironment. Adenosine is a purine nucleoside found within the interstitial fluid of solid tumors at concentrations that are able to inhibit cell-mediated immune responses to tumor cells. It is well established that extracellular adenosine inhibits T lymphocyte activation and effector function, including T cell adhesion to tumor cells and cytotoxic activity, by signaling primarily through A2a and A3 adenosine receptors on the surface of T cells. Importantly, A2a adenosine receptor-deficient mice exhibit enhanced anti-tumor immune responses by CD8+ T cells, as well as a dramatic reduction in the growth of experimental tumors in comparison to wild-type controls. A2a adenosine receptor signaling has also been implicated in adenosine-mediated inhibition of cytokine production and cytotoxic activity by activated natural killer (NK) cells, although the process of NK cell granule exocytosis is apparently suppressed via a distinct and as yet uncharacterized adenosine receptor. In this report, we review the evidence that adenosine is a potent inhibitor of cellular immune responses and may therefore be a major barrier to the successful immunotherapy of human carcinomas. The signaling pathways through which adenosine exerts its inhibitory effects on cell-mediated immune responses are also discussed. The accumulated evidence suggests that the effectiveness of immune-based therapies for solid tumors may be enhanced by selective antagonism of the adenosine receptor subtypes through which adenosine inhibits the anti-tumor activity of T lymphocytes and NK cells.

Contents
1. Introduction: tumor evasion of immune-based therapies
2. Adenosine production in the tumor microenvironment
3. Adenosine receptor subtypes and their expression by lymphocytes
4. Adenosine inhibition of T lymphocyte function
5. Adenosine inhibition of natural killer cell function
6. Impact of lymphocyte-associated adenosine deaminase on adenosine receptor stimulation
7. Conclusions

1. Introduction: tumor evasion of immune-based therapies

Recent advances in our understanding of cell-mediated immune responses against tumor cells have spurred the development of immunotherapeutic strategies as a possible adjunct to, or even a replacement for, conventional surgical, radiotherapeutic and/or drug-based approaches to the treatment of advanced cancers. Dramatic results from preclinical research in animal models of cancer suggest that both cell-based and peptide-based cancer vaccines should evoke potent tumor-specific cellular immune responses, leading to complete tumor regression in cancer patients (1-4). Unfortunately, subsequent clinical trials have revealed that the efficacy of existing therapeutic cancer vaccines is at best limited and appears to be restricted to certain types of tumors (5-7). These less than optimal clinical outcomes echo the disappointing clinical results of earlier attempts at cancer immunotherapy using the adoptive transfer of activated natural killer (NK) cells (8). The refractory nature of many solid tumors to cellular immune responses has been attributed to a spectrum of tumor immune evasion mechanisms that include tumor-associated immune suppression, which has been well documented in both tumor-bearing animals and cancer patients (9-11). A great deal of attention has recently been focused on the role of regulatory T cells and myeloid suppressor cells as mediators of tumor-associated immune suppression.
In support of this, mutant mice that lack the A2a adenosine receptor subtype through which adenosine mediates at least some of its immunosuppressive activity exhibit increased CD8+ T cell-mediated anti-tumor immune responses and reduced growth of experimental tumors in comparison to wild-type mice (20). This review will focus on the potential impact of tumor-elaborated adenosine on the function of T lymphocytes and NK cells that mediate anti-tumor immune responses. Although the topic is beyond the scope of this review, adenosine also modulates the growth of tumor cells; however, controversy presently exists as to whether the predominant effect is one of growth inhibition or increased proliferation (21-23).

2. Adenosine production in the tumor microenvironment

The disordered growth of an expanding carcinoma often outstrips the development of a supportive vascular bed, which leads to a reduction in oxygen levels throughout much of the tumor mass (24,25). For example, the hypoxic fraction in squamous cell carcinomas of the cervix and head and neck can be as high as 20-32% (26). Adenosine is present at elevated levels in hypoxic tissues because of increased intracellular adenosine production and release from the cells. This is the result of oxygen deprivation and cellular ATP depletion (27) by activation of the 5'-nucleotidase pathway (28) and inhibition of adenosine kinase (29). Bidirectional equilibrative nucleoside transporters in the membrane are responsible for exporting intracellular adenosine to the extracellular compartment (30). As expected, hypoxia has been shown to stimulate adenosine production in cultures of 3LL Lewis lung carcinoma cells (31). Moreover, in situ microdialysis shows that extracellular concentrations of adenosine in mouse and human colorectal carcinomas are 10-20-fold higher than those measured in surrounding normal tissue (19). Elevated levels of extracellular adenosine in a solid tumor microenvironment have recently been confirmed by another laboratory (20). It is important to note that extracellular adenosine levels in solid tumors can be further supplemented or modified by ecto-enzymes that mediate adenosine production or degradation at the cell surface. Adenosine-producing ecto-enzymes that are expressed by both lymphocytes and cancer cells include NTPDase 1 (CD39) (32,33) and ecto-5'-nucleotidase (CD73) (34,35). Adenosine levels can be modulated through dipeptidyl peptidase IV/CD26 (36-38), which is the binding protein for adenosine deaminase (ADA; adenosine aminohydrolase, EC 3.5.4.4) (39). Importantly, adenosine down-regulates dipeptidyl peptidase IV/CD26 expression and subsequent ADA binding by colorectal carcinoma cells (37), which may result in a further increase in extracellular adenosine in certain solid tumors. An additional possible level of control results from the ability of ADA to bind A2b adenosine receptors on lymphocytes (40) and A1 adenosine receptors on non-lymphoid cells (41).

3. Adenosine receptor subtypes and their expression by lymphocytes

Adenosine interacts with cell-surface adenosine receptors on T lymphocytes and NK cells that mediate cellular immune responses to tumor cells. There are currently 4 clearly defined adenosine receptor subtypes (A1, A2a, A2b, and A3) that belong to the G-protein-coupled seven-transmembrane family of cell-surface receptors (42-44). These adenosine receptors have been extensively characterized on the basis of amino acid sequence, receptor affinity for selective ligands, and second messengers triggered downstream of receptor activation. A1 and A2a adenosine receptors (K0 for adenosine, ~10^-4 to 10^-5 M) exhibit higher relative affinities for adenosine than A2b and A3 adenosine receptors (K0 for adenosine, ~10^-5 to 10^-4 M) (43,45). As shown in Fig. 1, adenosine receptor subtypes are coupled to different combinations of G-protein family members: A1, adenosine receptors to Gs/Golf, A2a, adenosine receptors to Gi/Golf, A2b, adenosine receptors to Gs/Golf, and A3, adenosine receptors to Gi/Golf (44,46,47). Stimulation of A2a and A3 adenosine receptor subtypes activates adenylyl cyclase, leading to elevated cellular cyclic AMP (cAMP) levels, whereas stimulation of A1 and A3 adenosine receptors inhibits adenylyl cyclase, resulting in a reduction in cellular cAMP levels. A1 and A3 adenosine receptor signaling can also activate phospholipase C and cause Ca^2+ to be released from intracellular stores. In addition, all adenosine receptor subtypes have been shown to couple to mitogen-activated protein kinase (MAPK) pathways (46,48).

Expression of different adenosine receptor subtypes on the surface of lymphocytes involved in tumor-specific
immune responses, as well as the relative affinities of these adenosine receptor subtypes for adenosine, dictate the effect that extracellular adenosine will have on lymphocyte function. Mouse T lymphocytes express mRNA transcripts coding for \(A_2a, A_2b \) and \(A_3 \) adenosine receptors (49-51), with \(A_2a \) adenosine receptor expression being the most abundant (50). In contrast, little if any \(A_1 \) adenosine receptor-encoding mRNA is present in mouse T cells (49-51), although a low level of \(A_1 \) adenosine receptor expression has been reported in the mouse thymus (50). \(A_2a, A_2b \) and \(A_3 \) adenosine receptors are also expressed by human T lymphocytes (52-54); \(A_1 \) adenosine receptor expression has not yet been examined on human T cells. It is noteworthy that adenosine receptor subtype expression by T lymphocytes can be modulated by T cell receptor signaling. In the mouse system, \(A_2a \) adenosine receptor mRNA expression becomes elevated in CD4+ T cells following their activation (55). Similarly, activated human T lymphocytes exhibit elevated \(A_2a \), as well as \(A_2b \) and \(A_3 \) adenosine receptor expression (52-54). Activated tumor-specific T cells that migrate into the tumor microenvironment may therefore have increased sensitivity to adenosine-mediated immune suppression. Less is known about adenosine subtype receptor expression by NK cells, although differential responses to adenosine subtype receptor-selective agonists suggest the presence of \(A_1, A_2a \) and, possibly, \(A_2b \) adenosine receptors on murine NK cells (31,56). The \(A_3 \) adenosine receptor may also be expressed on mouse NK cells since oral administration of an \(A_3 \) adenosine receptor-selective agonist leads to enhanced NK cell activity (57); however, confirmation at the mRNA or protein level is required because increased IL-12 production by dendritic cells in response to the \(A_3 \) adenosine receptor-selective agonist could account for the observed increase in NK cell activity. Adenosine receptor subtype expression by human NK cells has not yet been investigated.

4. Adenosine inhibition of T lymphocyte function

CD4+ and CD8+ T lymphocytes that recognize major histocompatibility class (MHC) II- and I-restricted tumor-associated antigens, respectively, have been identified in the circulation of cancer patients, as well as in the tumor microenvironment (58-60). CD4+ Th1 cells are an important source of the type 1 cytokines that drive anti-tumor immune responses whereas CD8+ cytotoxic T lymphocytes (CTL) eliminate tumor cells via granule-dependent and -independent cytotoxicity (61,62). On the other hand, the inhibitory activity of CD4+CD25+Foxp3+ regulatory T cells has been implicated in tumor evasion of immune responses (12,14). Interestingly, one mechanism by which CD4+CD25+Foxp3+ regulatory T cells have been suggested to suppress T cell responses is through extracellular adenosine production catalyzed sequentially by CD39 and CD73 co-expressed on the surface of regulatory T cells (63). Tumor-associated extracellular adenosine is predicted to affect cytokine production and cytotoxic effector function by tumor-infiltrating T lymphocytes because CD4+ and CD8+ T cells express each of the adenosine receptor subtypes except \(A_1 \) (see previous section). Indeed, adenosine potently inhibits a wide range of T lymphocyte responses to antigenic stimulation, including cellular proliferation (49,64), synthesis of IL-2 and proinflammatory cytokines such as interferon \(\gamma \) and TNF \(\alpha \) (55,65,66), up-regulation of CD25 (IL-2 receptor \(\alpha \) chain) (64,65), expression of cytotoxic effector molecules such as perforin and Fas ligand (49,67), CTL adhesion to tumor target cells (68,69) and granule exocytosis by CTL (67). In fact, adenosine inhibits some of the earliest steps in T cell activation associated with signal transduction through the T cell receptor and costimulatory CD28 molecules. As shown in Fig. 2A, low micromolar concentrations of adenosine or 5’-N-ethylcarboxamidoadenosine (NECA), a non-selective adenosine receptor agonist, inhibited T cell receptor/CD3-
and CD28-induced phosphorylation of tyrosine residues on intracellular mouse T cell proteins with molecular weights corresponding to the protein tyrosine kinases p56\(^{156}\) (56 kDa) and ZAP-70 (70 kDa), which are essential components of the T cell receptor signal transduction pathway (70). DNA synthesis by T cells was also suppressed in parallel with reduced tyrosine phosphorylation of intracellular mouse T cell proteins in the presence of adenosine or NECA (Fig. 2B).

Studies performed in the mouse system using adenosine receptor subtype-selective agonists and antagonists indicate that adenosine inhibits T cell activation and effector function by signaling primarily through A\(_2a\) and A\(_1\) adenosine receptors (Fig. 3); however, different aspects of T cell activation and effector function appear to be affected by A\(_2a\) and A\(_1\) adenosine receptor stimulation (49,51,55,64,67,68). For example, A\(_2a\) adenosine receptor signaling suppresses CD25 and cytotoxic effector molecule expression (64,67), whereas A\(_1\) adenosine receptor signaling inhibits T cell proliferation in response to T cell receptor stimulation (49), as well as the adhesion of activated T cells to syngeneic adenocarcinoma cells (68). Adenosine also acts through the A\(_2a\) adenosine receptor to prevent IL-2 and TNF \(\alpha\) secretion by mouse type 1 and type 2 CD8\(^{+}\) CTL, while maintaining interferon \(\gamma\) production at levels similar to control cells (74). By inhibiting IL-2 production, tumor-associated adenosine also prevents the clonal expansion of activated tumor antigen-specific T cells, while inhibition of the secretion of TNF \(\alpha\), which is a major proinflammatory cytokine, results in reduced protective inflammation at the tumor site. Importantly, antagonism of the A\(_2a\) adenosine receptor by siRNA-mediated down-regulation of A\(_2a\) adenosine receptor expression enhances the ability of CD8\(^{+}\) T cells to retard tumor growth (20). It is also important to note that A\(_2a\) adenosine receptor stimulation has different effects on CD8\(^{+}\) and CD4\(^{+}\) T cells since, unlike the effect on CD8\(^{+}\) T cells (74), signaling through this receptor blocks interferon \(\gamma\) secretion by murine CD4\(^{+}\) T cells (55).

The inhibitory effect of A\(_2a\) adenosine receptor signaling on some aspects of T cell function is caused by adenylyl cyclase-mediated accumulation of cAMP (55,64,67). A recent study suggests that activation of protein kinase A type I via the A\(_2a\) adenosine receptor is also involved in adenosine-mediated inhibition of cytokine production and cytotoxicity by T cells (66). A\(_2a\) as well as A\(_2b\) adenosine receptor signaling also activates the protein tyrosine phosphatase SHP-2, which results in the dephosphorylation of IL-2 and TNF \(\gamma\) receptors (72,73). TCR-dependent gene transcription is suppressed following adenosine stimulation of A\(_2a\) and A\(_1\) adenosine receptor (R) subtypes (49,55,64,66,74). Adenosine also interferes with IL-2-driven T cell expansion (51,74). A\(_2a\)R and A\(_3\)R stimulation induces the cAMP- and protein kinase A (PKA)-dependent tyrosine phosphatase SHP-2, which interferes with IL-2 signaling by dephosphorylating and inactivating STAT5 (51).

Figure 3. Inhibitory effect of adenosine on T cell signaling pathways. T cell proliferation and differentiation is initiated by T cell receptor (TCR) signaling and the subsequent transcription of genes involved in T cell activation, such as those coding for c-myc, interferon \(\gamma\), IL-2, and CD25 (71). Clonal expansion of T cells and the expression of effector molecules such as peroxidase IL-2 receptor (IL-2R) signaling and the subsequent tyrosine phosphorylation and activation of the transcription factor STAT5 (72,73). TCR-dependent gene transcription is suppressed following adenosine stimulation of A\(_2a\) and A\(_1\) adenosine receptor (R) subtypes (49,55,64,66,74). Adenosine also interferes with IL-2-driven T cell expansion (51,74). A\(_2a\)R and A\(_3\)R stimulation induces the cAMP- and PKA-dependent tyrosine phosphatase SHP-2, which interferes with IL-2 signaling by dephosphorylating and inactivating STAT5 (51).

By inhibiting IL-2 production, tumor-associated adenosine also reduces the migration of mouse dendritic cells to draining lymph nodes (81). Tumor-associated adenosine might therefore prevent dendritic cells from promoting T cell-mediated immune responses. As shown in Fig. 4, expression of costimulatory molecules by APCs is also
harvested onto glass fibre mats. [3H]TdR incorporation into the DNA of adenosine on costimulatory molecule expression by B cells receptor/CD3 complex (Fig. 4B). This negative effect of capacity to costimulate T cell activation through the T cell of adenosine or 2-chloroadenosine correlated with a reduced costimulatory molecules by B cells activated in the presence (ligands for CD28 on T cells), as well as CD40 (ligand for adenosine showed reduced expression of CD80 and CD86 in the presence of adenosine. Mouse B lymphocytes that were activated with phorbol ester and ionophore diminished in the presence of adenosine. Mouse B lymphocytes that were activated with phorbol ester and ionophore in the presence of adenosine or its stable analogue 2-chloro-adenosine (50). Adenosine may have a similar inhibitory effect on the expression of these or other costimulatory molecules by dendritic cells and macrophages. In addition to interfering with T cell costimulation at the level of the APC, adenosine inhibits T cell receptor- and IL-2-dependent up-regulation of costimulatory CD2 and CD28 by mouse T cells (65), which may further impair T cell activation in the solid tumor microenvironment.

5. Adenosine inhibition of natural killer cell function

NK cells are able to secrete proinflammatory cytokines, lyse certain MHC class I-deficient cancer cells and, upon stimulation by cytokines that include IL-2, IL-12, and IL-15, become lymphokine-activated killer (LAK) cells that exhibit enhanced cytolytic activity against a wider spectrum of tumor cells (82). However, as with T cell-stimulating cancer vaccines, overall clinical responses to NK cell-based immunotherapies (e.g., adoptive transfer of LAK cells) have to date been disappointing (8). Tumor-associated adenosine may, at least in part, account for the minimal impact that NK cell-based immunotherapy has had on human cancer since adenosine and adenosine analogues are potent inhibitors of NK cell function (56,83,84), as well as LAK cell function (31,85). Exposure to A1 adenosine receptor agonists suppresses the cytotoxic activity of mouse NK cells whereas A1 adenosine receptor agonists have a stimulatory effect (86). Given that intracellular cAMP levels modulate the killing activity of NK cells (86), the differential effect of A1 and A2 adenosine receptor ligation on NK cell-mediated cytotoxicity are most likely due to an A1 adenosine receptor-induced decrease in intracellular cAMP, resulting in enhanced cyto-lytic activity, and an A1 adenosine receptor-induced increase in intracellular cAMP, leading to diminished cytotoxic activity. Adenosine and its stable analogue 2-chloro-adenosine also act through A2a adenosine receptors to inhibit the killing of 3LL Lewis lung carcinoma cells by mouse LAK cells (31). Parallel studies using LAK cells generated from A1 and A2 adenosine receptor-deficient mice have ruled out any involvement of these adenosine receptor subtypes in the adenosine-mediated inhibition of LAK cell function. Recently, cAMP-dependent activation of protein kinase A type I has been implicated in adenosine-mediated inhibition of proinflammatory cytokine production and cytotoxic activity by mouse LAK cells (85). Interestingly, oral administration of the A1 receptor agonist 2-chloro-N6-(3-iodobenzyl)-adenosine-5-N-methyl-uronamide (CI-IB-MECA) has been suggested to enhance the cytotoxic activity of mouse NK cells, as well as cause increased serum IL-12 and reduced in vivo growth of B16-F10 melanoma cells (57). However, since IL-12 is a potent stimulator of NK cell activity (87), it is equally likely that the apparent potentiating effect of CI-IB-MECA on NK cell-mediated cytotoxicity is in fact an indirect result of increased IL-12 synthesis in response to the A1 adenosine receptor agonist. In any case, adenosine has an overall inhibitory effect on the cytotoxic function of NK and LAK cells (85,87). The accumulation of intracellular cAMP is also associated with the inhibitory effect of adenosine on IL-2-induced cellular proliferation and TNF α production in human NK cell cultures; however, in this instance adenosine failed to inhibit cytotoxic activity, most likely due to a counteracting effect by the high concentration of cytotoxicity-promoting IL-2 that was added to the NK cell cultures (84). In addition, mouse NK cells exhibit defective granule exocytosis in the presence of adenosine, although in this case the inhibitory effect is...
mediated through a distinct and as yet uncharacterized cell-surface adenosine receptor (83). Collectively, these findings indicate that extracellular adenosine has the potential to be an important inhibitor of tumor cell destruction by NK and LAK cells within the microenvironment of solid tumors.

6. Impact of lymphocyte-associated adenosine deaminase on adenosine receptor stimulation

The severe state of B cell and T cell immunodeficiency that occurs as a result of a genetic deficiency of ADA underscores the essential role played by ADA in the proper development and function of the immune system (88). For example, thymocytes from ADA-deficient mice exhibit a profound defect in T cell receptor signaling due to reduced phosphorylation of the CD3 ζ chain (89). ADA is normally anchored to the cell surface by CD26/dipeptidyl peptidase IV (39), which is up-regulated on activated CD4+ and CD8+ T cells (90,91). NK cells also show CD26 expression, which is increased in response to IL-2, IL-12, or IL-15 (92). Ecto-ADA can also bind to A1 and A2b adenosine receptors, the latter of which are present on T lymphocytes (49-51). However, ADA-A2b adenosine receptor complexes are not likely to be a major source of T cell-associated ecto-ADA because A2b adenosine receptor expression by T lymphocytes is low in comparison to CD26. Rather, the principal role of ADA that binds to A2b adenosine receptors is believed to involve the modulation of receptor signaling (40). ADA that is complexed with CD26 on T cells renders them resistant to the inhibitory effect of adenosine on cellular proliferation and IL-2 synthesis (93). Since the amount of ADA that can bind to lymphocytes increases with increasing CD26 expression (90,94), activated T cells and NK cells that infiltrate the microenvironment of solid tumors would be predicted to have an increased capacity to deaminate adenosine, thereby ameliorating the inhibitory effect of tumor-associated adenosine. However, this does not appear to be the case as there is ample evidence that ADA activity associated with peripheral lymphocytes from patients with solid tumors is significantly lower than healthy controls (95-97). Furthermore, it is possible that the high levels of adenosine in the tumor microenvironment (19,20) may down-regulate lymphocyte-associated CD26 and therefore levels of ADA in that context, as has been shown for epithelial cells (37,38). It is therefore most likely that immune effector cells in tumor-bearing individuals have accentuated sensitivity to the inhibitory effects of adenosine within the solid tumor microenvironment.

7. Conclusions

We were the first to hypothesize that elevated levels of adenosine in solid tumors might result in impaired killing of tumor cells by immune effector cells (98). Indeed, it is now apparent that the immunosuppressive activity of tumor-elaborated adenosine may constitute a significant impediment to the success of immunotherapeutic strategies that seek to elicit curative cell-mediated anti-tumor immune responses either by the stimulation of tumor-specific T cell responses or adoptive transfer of tumor-reactive killer cells such as LAK cells. As depicted in Fig. 5, this problem is further complicated by the ability of adenosine to negatively affect cellular anti-tumor immune responses at multiple levels, including the activation, development, and clonal expansion of tumor-specific T cells with helper and cytotoxic effector function (20,66), the adhesion of CTL to syngeneic carcinoma cells (68,69), and tumor cell killing by NK cells (56,83), LAK cells (31) and CTL (66). However, the identification of adenosine receptor subtypes and/or signal transduction pathways through which adenosine exerts its inhibitory effects on cell-mediated anti-tumor immune responses may allow for the development of focused pharmacologic strategies to reduce or ablate the impact of adenosine-mediated immune suppression in cancer patients, thereby increasing the effectiveness of therapeutic cancer vaccines and other immune-based cancer therapies.

Acknowledgements

D. Hoskin and J. Blay were supported by grants from the Natural Sciences and Engineering Research Council of Canada (NSERC), the Banting Research Foundation and Cancer Research and Education Nova Scotia. D. Conrad was supported by an NSERC postgraduate award. J. Mader and S. Furlong were supported by scholarships from the Cancer Research Training Program with funding from the Dalhousie Cancer Research Program. J. Mader was also the recipient of a studentship from the Nova Scotia Health Research Foundation. S. Furlong was also the recipient of an NSERC postgraduate award.

References

