Simultaneous downregulation of uPAR and MMP-9 induces overexpression of the FADD-associated protein RIP and activates caspase 9-mediated apoptosis in gliomas

CHRISTOPHER S. GONDI1, DZUNG H. DINH2, MEENA GUJRATI3 and JASTI S. RAO1,2

Departments of 1Cancer Biology and Pharmacology, 2Neurosurgery and 3Pathology, University of Illinois College of Medicine at Peoria, Peoria, IL, USA

Received May 9, 2008; Accepted June 25, 2008

DOI: 10.3892/ijo_00000065

Abstract. We have previously demonstrated the effectiveness of simultaneous RNA interference (RNAi)-mediated down-regulation of urokinase-type plasminogen activator receptor (uPAR) and matrix metalloproteinase-9 (MMP-9) in inhibiting tumor invasion in vitro and in vivo. In particular, we have shown that the downregulation of uPAR and MMP-9 inhibits intracranial tumor growth. The mechanism of the inhibition of tumor growth has not yet been determined. In this study, we have attempted to explain the mechanisms involved in the inhibition of invasiveness and tumor growth in vitro. SNB19 glioma cells were transfected with scrambled vector plasmid (pSV) and a siRNA-expressing plasmid targeting either uPAR (pU) or MMP-9 (pM) singly or in combination (pUM). Untransfected cells were also used as a control. Western blotting and RT-PCR analyses showed the downregulation of uPAR in pU-transfected cells and MMP-9 in pM-transfected cells. In cells transfected with pUM, we observed down-regulation of both uPAR and MMP-9, thereby indicating the specificity of the siRNA-expressing plasmids. An increase in caspase 9 expression was observed in cells transfected with pUM whereas no change in the level of caspase 9 was observed in pU or pM-transfected cells. Additionally, no change in the expression level of caspase 8 was observed. However, an increase in the expression level of cleaved PARP was observed in the case of cells transfected with pU, pM and pUM. Cells transfected with pUM showed the highest levels of cleaved PARP expression. Expression levels of APAF-1 were also higher in pUM-transfected cells with no change in expression levels of controls and in pU and pM-transfected cells. Total CAD expression levels did not change under any of the transfection conditions. However, immunohistochemical studies demonstrated that CAD was translocated to the nucleus, thereby indicating DNA damage. As determined by Western blot analysis of subcellular fractions, cytoplasmic levels of cytochrome c were also increased. We determined the extent of DNA damage using the TUNEL assay (poly-A termination of free -OH ends of degraded nuclear DNA). Based on our results we conclude that the simultaneous downregulation of uPAR and MMP-9 induces apoptosome-mediated apoptosis.

Introduction

Apoptosis (programmed cell death), is a genetically regulated mechanism with a central role in metazoan development and homeostasis. Death receptors (Fas, TNFR-2, DR3 and TRAIL receptors) induce apoptosis upon ligation to cognate ligands or ectopic expression (1,2). The assembly of a death-inducing signaling complex occurs in a hierarchical manner upon receptor activation. The death domain of the receptor binds to the corresponding domain of the adapter molecule FADD, which in turn recruits the zymogen form of death proteases or caspases. Upon activation of caspases and the subsequent increase in concentration, self-activation occurs and triggers the apoptotic pathway. The death domain of the receptor binds to the corresponding domain of the adapter molecule FADD, which in turn recruits the zymogen form of death proteases or caspases. Upon activation of caspases and the subsequent increase in concentration, self-activation occurs and triggers the apoptotic pathway. The cytokine tumor necrosis factor (TNF) elicits a wide range of biological responses, including inflammation, cell proliferation, differentiation and apoptosis (2). Although the molecular mechanisms of TNF signaling have largely been elucidated, the principles that regulate survival and death are still unknown. At least four different mechanisms of regulation can be distinguished: i) NF-κB-mediated induction of proteins of the TNF-R complex; ii) NF-κB-independent protection against apoptosis by the TNF-R-associating factor 2 (TRAF2)-mediated recruitment of anti-apoptotic proteins; iii) dual activation of apoptosis and NF-κB by a single molecule and iv) amplification of the death signal by proteolytic inactivation of signaling proteins that are involved in NF-κB activation or cell survival.
The pro-inflammatory cytokine, TNF, exerts its pleiotropic function by binding to two different receptors-TNF-R1 (55 kDa) and TNF-R2 (75 kDa). The two receptors are characterized by the presence of several cysteine repeats in their extracellular domains, whereas their intracellular domains contain no significant homology. Although TNF-R2 can have an important contribution in a number of responses in specific cell types, TNF-induced effects are mediated by TNF-R1 in most cells. The intracellular domain of the latter is characterized by the presence of an 80 amino acid-long death domain (DD), which is responsible for the generation of the cytotoxic death signals as well as the activation of the transcription factor NF-xB. A similar DD is also found in several cytoplasmic signaling proteins including TNF-R-associated DD protein (TRADD) and Fas-associating protein with a death domain (FADD). Triggering of TNF-R1 by TNF leads to clustering of pre-assembled TNF-R complexes and the recruitment of TRADD to TNF-R via a homotypic DD-DD interaction. TNF-induced signaling pathways lead to the activation of NF-xB and apoptosis, bifurcate at the level of TRADD.

Stimulation of TNF-R1 can simultaneously activate at least two signaling pathways within cells (3). One leads to apoptosis while the other counters the death signal and leads to cell survival. When both pathways are activated by TNF, the cell receiving the signal stays alive and multiplies. However, if the balance is somehow shifted to the death pathway, the cell will finally succumb. Despite our increasing knowledge of the signaling proteins that are involved in these signal transduction pathways, the mechanisms that shift the balance to one side or another are still largely unknown. It is clear that the final decision to live or die is at least partially dependent on the expression level of specific proteins.

Materials and methods

Construction of hpRNA expressing plasmid. pCDNA 3 plasmid with a CMV promoter was used in the construction of the hpRNA-expressing vector, as previously described (4) briefly. The following oligos were synthesized: aattCaagtggcaccacca caacataatataaatttggtgggtggcacttg for the matrix metallo-proteinase-9 (MMP-9) inverted repeat sequence and gatcTacacggtaggagcgattatatataaattgcctgctgctgtag for the urokinase-type plasminogen activator receptor (uPAR) inverted repeat sequence. Both were synthesized for MMP-9 and uPAR. The inverted repeats were laterally symmetrical, making them self-complimentary, with a five-base pair mismatch in the loop region. These five-base pair mismatches aid in the loop formation of the hpRNA. Oligos were heated in a boiling water bath in 6X SSC for 5 min and allowed to self-anneal by slow cooling to room temperature. The resulting annealed oligos were sequentially ligated to pCDNA 3 at the EcoRI site for MMP-9 and BamHI site for uPAR. The resulting plasmid was named pUM. Two single constructs were also made: pU targeting uPAR alone and pM targeting only MMP-9.

Cell culture and transfection. The SNB19 cell line, which was established from a high-grade human glioma, was used in this study. Cells were grown in Dulbecco's modified Eagle's medium/F12 media (1:1, v/v) supplemented with 10% fetal calf serum in a humidified atmosphere containing 5% CO₂ at 37°C. SNB19 cells at 60% confluency in 100-mm tissue culture plates were transfected with 10 μg of siRNA-expressing plasmid constructs (EV/SV, pU, pM or pUM) using lipofectamine as per manufacturer's instructions (Life Technologies, Rockville, MD). Following transfection, conditioned media and cell lysates were assayed for uPAR and MMP-9 expression levels using Western blot analysis and gelatin zymography as per standard protocols.

Western blot analysis. SNB19 cells were transfected with mock, empty vector (EV)/scrambled vector (SV), pM, pU or pUM. After 48 h, cells were collected and total cell lysates were prepared in standard RIPA extraction buffer containing aprotinin and phenylmethylsulfonyl fluoride. The extracts were incubated at 37°C for 5 min and then centrifuged to separate the lower (detergent) phase, which mainly contains hydrophobic membrane proteins including the glycosyl-phosphatidylinositol-anchored uPAR. Subsequently, 20 μg of protein from these samples were separated under non-reducing conditions by 12% SDS-PAGE and transferred to nitrocellulose membranes (Schleicher & Schuell, Keene, NH). The membranes were probed for 2 h with antibodies against RIP, cleaved PARP, APAF-1, caspase 8, and caspase 9 as per standard protocols. The membranes were subsequently washed three times with PBS to remove excess primary antibodies, incubated with appropriate HRP-conjugated secondary antibodies and then developed according to enhanced chemiluminescence protocol (Amersham, Arlington Heights, IL). For loading control, the membranes were stripped and probed with monoclonal antibodies for GAPDH as per standard protocol.

Gelatin zymography. PMA-induced MMP-9 expression was analyzed using zymography after transfection of SNB19 cells with EV/SV, pU, pM or pUM. Twenty-four hours after transfection, serum-containing media were replaced with serum-free media and the cells were stimulated with 100 nM PMA. After an additional 24 h incubation period, conditioned media were collected from cells and centrifuged to remove cellular debris. Conditioned media were also collected from untreated cells maintained under similar conditions and analyzed as the control (mock). Equal amounts of protein (30 μg) were subjected to electrophoresis on 10% SDS gels containing gelatin (0.5 mg/ml). Gels were stained with amido black (Sigma Aldrich, St. Louis, MO) and gelatinase activity of MMP-9 was visualized as clear bands on a dark blue background at areas corresponding to the molecular weight of MMP-9 protein.

In situ terminal-deoxytransferase mediated dUTP nick end-labeling (TUNEL) assay. A TUNEL apoptosis detection kit (Upstate Biotechnology Inc, Lake Placid, NY) was used for DNA fragmentation fluorescence staining according to the manufacturer's protocol. Briefly, SNB19 cells, which were grown on chamber slides, were transfected with RNAi constructs targeting uPAR (pU), MMP-9 (pM), uPAR and MMP-9 in combination (pUM), or with empty vector/scrambled vector (EV/SV). Seventy-two hours after....
transfection, cells were fixed with 4% paraformaldehyde 0.1 M phosphate buffer (pH 7.4). Then, cells were incubated with a reaction mix containing biotin-dUTP and terminal deoxynucleotidyl transferase for 60 min. Fluorescein-conjugated avidin was applied to the samples, which were then incubated in the dark for 30 min. Positively stained fluorescein-labeled cells were visualized and photographed using fluorescence microscopy.

Immunohistochemistry. SNB19 cells were cultured in 8-well chamber slides at a concentration of 5x10^3 cells/well. After a 24 h incubation period, cells were transfected with EV/SV, pU, pM or pUM. Untreated cells were also cultured under similar conditions and served as the control. After an incubation period of 48 h, cells were fixed with 3.7% formaldehyde and then blocked with 1% bovine serum albumin (BSA) for 1 h at room temperature. The slides were then incubated with primary antibody (anti-caspase 9 cleaved) diluted to a concentration of 1:200 in BSA overnight at 4°C. Slides were washed three times with PBS to remove excess primary antibody and were then incubated in anti-mouse HRP-conjugated IgG (suitable to primary antibody) at a concentration of 1:500 for 1 h at room temperature. The slides were washed three times with PBS and HPR substrate DAB was added for visualization of caspase 9 expression.

DNA fragmentation assay. SNB19 cells were cultured in 100-mm culture plates at a concentration of 1x10^6 cells/plate. After a 24 h incubation period, cells were transfected with EV/SV, pU, pM or pUM. Untreated cells were also cultured under similar conditions and served as the control. Genomic DNA was extracted as per standard protocol and electrophoresed on a 0.8% agarose gel using TBE buffer. DNA fragmentation was visualized under UV light after staining with ethidium bromide.

Isolation of mitochondrial and cytosolic cell fractions. SNB19 cells, which were cultured on chamber slides, were transfected with RNAi constructs targeting uPAR (pU), MMP-9 (pM), uPAR and MMP-9 in combination (pUM), or with empty vector (EV). Seventy-two hours after transfection, the cells were fixed in 10% buffered formaldehyde, immunoprobed for CAD using 5 nm gold-conjugated secondary antibody and processed for transmission electron microscopy. For transmission electron microscopy, gelatin capsules with LR white were polymerized on the cell surface side of chamber slides. The polymerized gelatin capsules were then processed for transmission electron microscopy.

Results

RNAi-mediated targeting of uPAR and MMP-9 decreases uPAR and MMP-9 mRNA and protein expression levels. uPAR protein expression levels were significantly decreased in pU and pUM-transfected cells as compared to controls, SV-transfected cells and pM-transfected cells (Fig. 1A). MMP-9 enzymatic activity was analyzed in conditioned media collected from control cells as well as from cells treated with pSV, pU, pM and pUM using gelatin zymography (Fig. 1B). MMP-9 activity decreased significantly in the conditioned media collected from pM- and pUM-treated cells when compared to control, pSV- and pU-treated cells. Cells treated with pUM exhibited lower MMP-9 activity than cells treated with pM. However, no change was observed in MMP-2 activity. Quantitative analysis revealed that expression levels of uPAR decreased 5-fold in puPAR-treated cells and 10-fold in pUM-treated cells (Fig. 1C). Quantitative analysis of levels of MMP-9 expression revealed that MMP-9 expression was reduced in puPAR-treated cells by 1.25-fold whereas cells treated with pMMP-9 decreased by 4.5-fold, in pUM-treated cells levels of MMP-9 decreased by >10-fold (Fig. 1D). RT-PCR analysis of DNA from cells transfected with pU, pM and pUM revealed significant decreases in mRNA levels of uPAR and MMP-9 as compared to the controls (Fig. 1E). The reduction in mRNA level was more significant with pUM transfection as compared to transfection with either of the single constructs. Scrambled vector-treated cells did not have any effect on the mRNA and protein levels. GAPDH levels were analyzed at the mRNA and protein levels to serve as a loading control and no differences were observed.

Downregulation of uPAR and MMP-9 induces pro-apoptotic molecules. Fig. 2A shows that the simultaneous downregulation of uPAR, MMP-9 singly and simultaneously induced the expression of Receptor-interacting Protein kinase (RIP) and activated cleavage of Poly (ADP-ribose) polymerase (PARP). Increase in apoptotic protease activating factor 1 (APAF-1) expression was observed only in pMMP-9 and pUM-transfected cells, with pUM-transfected cells showing concentration of 5-10 μg/ml and stored at -80°C or used immediately. Intact mitochondria were lysed in lysis buffer (150 mM NaCl, 50 mM Tris-HCl, 2 mM EDTA, 1% NP-40, pH 7.4) and Western blotted. Western blotting for cytochrome c in the cytosolic and mitochondrial fractions was performed as per standard protocol.
the highest increase in APAf-1 expression. Activation of caspase 9 but not caspase 8 was observed only in pUM-transfected cells (Fig. 2B) when compared to controls, SV, puPAR or pMMP-9 transfected cells. Genomic DNA electrophoresis demonstrated that cells transfected with pUM exhibited DNA degradation, whereas little DNA damage was observed in cells transfected with pU or pM. Controls SV, puPAR and pMMP-9-transfected cells did not show any DNA damage (Fig. 2C).

Simultaneous downregulation of uPAR and MMP-9 induces nuclear CAD localization and mitochondrial cytochrome c release. Cells transfected with pU and pUM showed CAD localization in the nucleus as determined from transmission electron microscopy studies (Fig. 3A), which indicates DNA degradation. Western blot analysis of nuclear and cytoplasmic fraction of cells transfected with SV, puPAR, pMMP-9 or pUM was performed and levels of CAD and cytochrome c were determined. Nuclear fraction isolates of the control, SV and pMMP-9-transfected cells did not show the presence of CAD. Nuclear CAD was observed in puPAR and pUM-transfected cells (Fig. 3B). Further, cytoplasmic fractions of cells transfected with puPAR or pUM showed presence of cytoplasmic cytochrome c, which is indicative of mitochondrial permeability (Fig. 3B).

Simultaneous downregulation of uPAR and MMP-9 induces DNA fragmentation as determined by TUNEL assay. Cells transfected with pUM showed TUNEL-positive cells seen as green fluorescence (Fig. 4A). Quantitative analysis of TUNEL...
assay results indicated that <5% of puPAR and pMMP-9-transfected cells showed fluorescence, whereas cells transfected with pUM showed >75% fluorescence (Fig. 4B).

Discussion

RNA interference (RNAi) is the phenomenon wherein gene expression is effectively suppressed through the introduction of gene-specific, double-stranded RNA (dsRNA). The phenomenon was first observed in plants, later in the worm *caenorhabditis* and subsequent studies have shown that RNAi exists in a wide variety of eukaryotic organisms including mammals (5,6). RNAi was originally believed to work as a defense mechanism against invading viruses, but preliminary studies have shown that it also has a role in maintenance of heterochromatin during mitosis and meiosis. Once the dsRNA is introduced into a cell, Rnase III cleaves it into double-stranded 21 to 23 nucleotides, called small interfering RNAs (siRNA), in an ATP-dependent manner. These siRNA become integrated into a multi-subunit protein complex termed RNA-dependent silencing complex (RISC) that guides the siRNA to the target (7). In recent years, RNAi treatment has been shown to have therapeutic benefits in a variety of *in vivo* disease models (8,9).

Cancer progression involves complex mechanisms and depends mainly on the degradation of the extracellular matrix, which is accomplished by various classes of proteinases. Several earlier studies have reported the increased expression of uPAR in various types of cancers (10-12) as well as its localization and active role at the tumor invasion front (13,14). Furthermore, earlier reports suggested a strong role for uPAR in cell adhesion since uPAR consists of a site for binding to vitronectin (15). Several studies also revealed that uPAR initiates intracellular events and thus contributes to cell proliferation (16,17).

Elevated MMP-9 levels have been reported in various cancers (18-21). Studies have reported elevated expression of both uPAR and MMP-9 in human gliomas (22). From our
Figure 3. SNB19 cells, which were grown on chamber slides, were transfected with RNAi constructs targeting uPAR (pU), MMP-9 (pM), uPAR and MMP-9 in combination (pUM), or with empty vector (EV). Seventy-two hours after transfection, the cells were fixed in 10% buffered formaldehyde and immunoprobed for CAD using 5 nm gold-conjugated secondary antibody and processed for electron microscopy. For transmission electron microscopy, gelatin capsules with LR white were polymerized on the cell surface side of chamber slides. The polymerized gelatin capsules were then processed for transmission electron microscopy (A). The subcellular fractions of SNB19 cells transfected with RNAi constructs targeting uPAR (pU), MMP-9 (pM), uPAR and MMP-9 in combination (pUM), or with empty vector (EV) were isolated as per standard protocols 72 h after transfection. Proteins were isolated from the nuclear, mitochondrial and cytoplasmic fractions and an equal quantity of proteins (50 μg) was electrophoresed on SDS gels. The gels were blotted as per standard protocols and immunoprobed for CAD and cytochrome c using appropriate primary and HRP-conjugated secondary antibodies (B). NM, nuclear membrane; N, nucleus; Nu, nucleous.

Figure 4. SNB19 cells grown on chamber slides were transfected with RNAi constructs targeting uPAR (pU), MMP-9 (pM), uPAR and MMP-9 in combination (pUM), or with empty vector (EV). Seventy-two hours after transfection, the cells were fixed in paraformaldehyde and processed as per the manufacturer's instructions. Briefly, the TUNEL (Terminal deoxynucleotidyl transferase biotin-dUTP nick end-labeling) method identifies apoptotic cells in situ by using terminal deoxynucleotidyl transferase (TdT) to transfer biotin-dUTP to the free 3'-OH of cleaved DNA. The biotin-labeled cleavage sites are then visualized by reaction with fluorescein-conjugated avidin (avidin-FITC). The cells were visualized using a fluorescent microscope with appropriate filter sets. The greatest DNA fragmentation was observed in pUM-transfected cells. Percent apoptosis was calculated based on the amount of fluorescence observed.
promote tumor growth, invasion, and metastasis. The increase associated with TNF-α might be associated with TRADD and FADD, which in turn are both uPAR and MMP-9 were downregulated. RIP is known to result in the collapse of the mitochondrial membrane potential by FADD remains to be determined.

In the present study, we observed that the downregulation of uPAR alone did cause mitochondrial membrane collapse, but to a much smaller extent when compared to uPAR-MMP-9-downregulated cells. It is probable that over time, uPAR-downregulated cells would induce the activation of caspase 9, though the choice of initiation of caspase 8 or 9 still remains a mystery. In summary, we show that the simultaneous downregulation of uPAR and MMP-9 induces overexpression of RIP and cleavage of PARP. Our study also shows that activated caspase 9 induces nuclear DNA degradation as well as a collapse in the mitochondrial membrane potential.

Acknowledgements

The authors thank Shellee Abraham for preparing the study and Diana Meister and Sushma Jasti for reviewing the manuscript. We thank Noorjehan Ali for technical assistance. This research was supported by National Cancer Institute Grant CA 75557, CA 92393, CA 95058, CA 116708, N.I.N.D.S. NS47699, NS057529, and NS61835 and Caterpillar, Inc., OSF Saint Francis, Inc., Peoria, IL (to J.S.R.).
References

