Inhibition of Stearoyl-CoA Desaturase 1 expression in human lung adenocarcinoma cells impairs tumorigenesis

NATALIA SCAGLIA1,2 and R. ARIEL IGAL2

1Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), Facultad de Ciencias Médicas, Universidad Nacional de La Plata, 1900 La Plata, Argentina; 2Department of Nutritional Sciences and Rutgers Center for Lipid Research, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA

Received May 7, 2008; Accepted June 17, 2008

DOI: 10.3892/ijo_00000072

Abstract. Saturated (SFA) and monounsaturated (MUFA) fatty acids, the most abundant fatty acid species, have many divergent biological effects including the regulation of cell proliferation, programmed cell death and lipid-mediated cytotoxicity. Their distribution is regulated by Stearoyl-CoA Desaturases (SCD), the enzymes that convert SFA into MUFA. A positive correlation between high levels of tissue MUFA and several types of cancer has been reported, but a causal relationship between the function of SCD1, the main human SCD isoform, and cancer development has not yet been firmly established. Here we report that the stable knockdown of SCD1 gene expression in A549 human lung adenocarcinoma cells decreased the ratio MUFA/SFA in total lipids and inhibited the incorporation of glucose into cell lipids. Cell proliferation and anchorage-independent growth were considerably decreased in SCD1-depleted cells, whereas the rate of apoptosis was elevated, with respect to control A549 cells. In addition, phosphorylation of Akt-Ser473 and GSK-3β-Ser9 was found notably impaired in SCD1-ablated A549 cells. Interestingly, the effects of SCD1 blockade on Akt activation, cancer cell growth and apoptosis could not be reversed by exogenously added oleic acid. Remarkably, the reduction of SCD1 expression in lung cancer cells significantly delayed the formation of tumors and reduced the growth rate of tumor xenografts in mice. Our study demonstrates that SCD1 activity regulates Akt activation and determines the rate of cell proliferation, survival and invasiveness in A549 cancer cells and shows, for the first time, that SCD1 is a key factor in the regulation of tumorigenesis in vivo.

Introduction

Lung cancer is the leading cause of cancer death in the US and one of the most deadly forms of cancer worldwide. The vast majority of lung cancer (~80%) belongs to the histopathological type of non-small cell lung cancer, with squamous cell carcinomas and adenocarcinomas as the most prominent forms (1). Since the 5-year survival rate of lung cancer remains disappointingly low (~14%), it is clear that a thorough understanding of the mechanisms of lung cancer development is necessary in order to discover new therapeutic targets. In this regard, lipid metabolism remains an under-studied area of cancer research, although information on lipid perturbations in cancer is mounting. For instance, a ubiquitous metabolic alteration in several types of cancer cells occurs in the de novo synthesis of fatty acids, the building blocks of cell membrane-forming phospholipids and storage lipids such as triacylglycerols and cholesteryl esters. While in normal cells fatty acid synthesis is inhibited by exogenous fatty acids uptaken from circulation, cancer cells display a high rate of fatty acid synthesis, propelled by excess substrates supplied by active glycolysis (2) and constitutively overexpressed fatty acid synthase (FAS) (3). Increased de novo fatty acid synthesis was shown in oncogene-transformed human cells (4) and in several types of cancer cells including breast and prostate cells (5-7). Importantly, the expression level of FAS has been correlated with poor cancer prognosis (3).

Notably, while two main products of de novo fatty acid synthesis and elongation, palmitic and stearic acids, are abundant in cancer cells, increased content of their monounsaturated fatty acid (MUFA) Δ9 desaturation products, palmitoleic and oleic acids, respectively, were also observed in transformed and cancer cells and tissues (8-10), suggesting that the high rate of fatty acid synthesis in cancer is coupled to the conversion of saturated fatty acids (SFA) into MUFA. High levels of expression and activity of Stearoyl-CoA Desaturase 1 (SCD1), the endoplasmic reticulum-resident Δ9 desaturase that converts SFA into MUFA (11), have been reported in several types of cancers, including colonic and...
esophageal carcinoma, hepatocellular adenoma, in mammary cancer cells as well as chemically induced tumors (12-15). However, high expression of SCD1 in human cancer tissues seems to be not universal. In histopathological studies of cancerous prostate epithelium, despite the presence of high levels of SREBP-1, a powerful activator of SCD1 gene transcription (16,17), low levels of SCD1 have been reported (18).

In vitro studies have provided new evidence of a causal relationship between MUFA synthesis and several biological features of the cancer phenotype. We have reported that SV40-transformed human lung fibroblasts show significantly increased protein and activity levels of SCD1 with respect to their parental normal cell line (4), suggesting that a high rate of MUFA synthesis is needed for an active production of membrane lipids to sustain the fast replication rate of transformed cells (19). We have also shown that SV40-transformed human lung fibroblasts bearing a knockdown of SCD1 exhibit a significant decrease in MUFA, cholesterol and phospholipid synthesis (20). Moreover, it was also found that SCD1 deficiency leads to a slower rate of cell proliferation, a loss of anchorage-independent growth and higher rates of ceramide-independent apoptosis, strongly indicating the participation of SCD1 in the regulation of cell proliferation, survival and invasiveness.

These observations in oncogene-transformed cells prompted us to determine whether a reduction of SCD1 expression and, consequently, in the synthesis and content of cellular MUFA would alter the in vitro and in vivo neoplastic phenotype of human lung cancer cells. Additionally, we wished to explore whether ablation of SCD1 expression in cancer cells would alter the activity of lipid-sensitive signaling pathways associated with cell growth, survival and cancer, such as the Akt pathway, hence causing the aforementioned phenotypical changes. Thus, in the present study, we examined the effect of the knockdown of SCD1 gene expression on cell growth, programmed cell death and the tumorigenic capacity of A549 cancer cells, a human lung adenocarcinoma cell line widely used as a good model for non-small cell lung cancer. The present results show that SCD1-deficient A549 cells exhibit slower in vitro cell proliferation, higher rates of apoptosis and impaired anchorage-independent colony formation. This loss of in vitro neoplastic phenotype was not reversed by exogenous oleic acid, suggesting that an endogenous pool of MUFA must be available for sustaining the biological alterations of lung cancer cells. Importantly, the reduction of SCD1 expression in A549 cells and in SV40-transformed cells promoted a decrease in the phosphorylation of both Akt and its downstream effector glycogen synthase kinase-3β (GSK-3β), suggesting that SCD1 may regulate cancer cell growth and survival by modulating the activity of the Akt signaling pathway. When A549 cells with ablated SCD1 expression were injected into mice, they exhibited not only a great delay in the formation of tumors, but also a slower rate of tumor growth. In summary, we report here that SCD1 appears to be an essential factor in the stepwise process leading to the onset and progression of lung cancer, laying the groundwork to explore the potential therapeutic applications of targeting SCD1 to treat human cancers.

Materials and methods

Materials.** A549 human lung adenocarcinoma cancer cells were obtained from American Type Culture Collection (Rockville, MD). Four to six week-old female NIH Swiss nude nu/nu mice were obtained from the Laboratory Animal Facility, University of La Plata School of Veterinary, Argentina. Standard rodent chow was purchased from Cargill-Grupo Pilar S.A, Argentina and sterilized by γ radiation (25 kGray) at IONICS, Buenos Aires, Argentina. Lipofectamine™, pcDNA3 plasmid, Geneticin™, cell culture media and other culture reagents were from Invitrogen Life Technologies (Carlsbad, CA). Restriction enzymes and other molecular biology reagents were from Promega (Madison, WI). [1-14C]Stearic acid, [14C]glucose and [6-3H]-thymidine were from American Radiolabeled Chemicals, Inc. (St. Louis, MO). Ultrafiltered fetal bovine serum (FBS), fatty acid-free bovine serum albumin (BSA), mouse anti-ß-actin monoclonal antibody, anti-mouse IgG peroxidase conjugate, phosphatase and protease inhibitor cocktail were purchased from Sigma (St. Louis, MO), Pure lipid standards were from Doosan Serdary (Yongin, Korea). Palmitic and oleic acid were from NuCheck Prep (Elysian, MN). Cell culture supplies, silica gel 60 chromatography plates and analytical-grade solvents were from Fisher Scientific (Morris Plains, NJ). Polyclonal anti-SCD1 antibody was a generous gift of Dr Jean-Baptiste Demoulin, Université Catholique de Louvain, Belgium. Polyclonal antibodies anti-total or phosphorylated Akt1/2/3 (Ser 473) and anti-p-GSK-3β (Ser 9) were from Santa Cruz Biotechnologies and Cell Signaling, respectively.

Cell culture.** A549 cells were routinely cultured in bicarbonate-buffered minimum essential medium with Earle’s salts (MEM) with 10% heat-inactivated FBS, penicillin (100 U/ml), streptomycin (10 μg/ml), 1% non essential amino acids and 1% MEM vitamin solution (growing medium), at 37°C, 5% CO₂ and 100% humidity.

Stable knockdown of SCD1 gene expression.** The construct pcDNA3-hSCDAs (for ‘human Stearoyl-CoA Desaturase antisense’ cDNA) (20) was transfected into A549 cells using Lipofectamine reagent according to the manufacturers’ instructions. Positively transfected cells were selected with 600 μg/ml Geneticin in a culture medium for 14 days. Individual cell colonies (hSCDAs) were then isolated using cloning cylinders. One cell clone, hSCDAs-a, with low levels of SCD1 expression and activity was selected for performing the experiments. Empty pcDNA3 vector was stably transfected into A549 cells and these cells were considered the control cell line.

Immunoblotting.** Western blot analysis was performed, as previously described (20). Polyclonal rabbit anti-human SCD1 (1:2000 dilution) or monoclonal mouse anti-ß-actin (1:5000 dilution) were used as primary antibodies. Anti-total or phosphorylated Akt1/2/3 (Ser 473) and anti-p-GSK-3β (Ser 9) were used in a 1:250-1:1000 and 1:1000 dilutions, respectively. In some experiments, cells were cultured in 0.1% FBS for 24 h and incubated with 0.1 mM of palmitic or oleic acid complexed with 0.5% fatty acid free BSA in 0.1%
FBS supplemented media for 30 min before harvesting. The fatty acid concentration in media was determined with the NEFA C kit (Wako Chemicals, Richmond, VA).

Lipid extraction. Cell monolayers were washed twice with ice-cold PBS and scraped from the petri dishes with two additions of 1 ml ice-cold methanol. One ml of chloroform and 0.5 ml of distilled water were added in order to complete the extraction of total lipids, as described by Bligh and Dyer (21).

Determination of SCD activity. Preconfluent cells (80-90% confluency) were incubated with trace amounts (2.3 μM) of [14C]stearic acid in culture medium containing 0.5% BSA for 6 h. At the end of the incubation, total cell lipids were extracted as described. Total cellular lipids were saponified and released fatty acids were then esterified with 10% BF3 in methanol for 3 h at 64°C. The derivated methyl esters were separated by argentation thin layer chromatography (TLC) following the procedure of Wilson and Sargent (22), using a solvent phase consisting of hexane:ethyl ether (90:10, by vol). Pure stearic acid and oleic acid standards were run in parallel to the samples. Fatty acid spots on TLC were detected by radiometric scanning. Spots were scraped from the TLC plate and quantified with a scintillation counter. The level of [14C]oleic acid produced was calculated from specific activity of [14C]stearic acid and normalized to cellular protein content.

Metabolic labeling. Preconfluent cells were incubated for 6 h with 1 μCi/dish [3H]glucose, in 10% FBS MEM. At the end of the labeling period, the radioactive medium was recovered and cell monolayers were washed twice with 0.1% BSA in ice-cold phosphate-buffered saline (PBS), in order to eliminate residual label on the cell surface. Lipid extraction was carried out as described above.

Lipid analysis. Analysis of radioactivity of neutral and polar lipid species were carried out, as previously described (20). Briefly, neutral and polar lipid species were separated on silica gel 60 thin-layer chromatography (TLC) plates using one-dimensional single development procedures. Neutral lipid separation was carried out with hexane:ethyl ether:acetic acid, 80:20:2 (by vol) as solvent system. Pure lipid standards were seeded and run on the TLC plates in parallel to samples. Individual [14C]labeled lipid-spots detected by radiometric scanning were scraped into plastic vials and radioactivity levels of [14C]stearic acid and normalized to cellular protein content.

Analysis of tumor formation. Four to six-week-old female Swiss nude mice were maintained in isolators under pathogen-free conditions and kept in a 12h/12h light/dark cycle. After a 15-day acclimatization period, mice were subcutaneously inoculated in the interscapular space with 1x10^6 hSCDα cells or control A549 cells resuspended in 0.1 ml PBS. Two independent experiments were performed with five animals per group and per experiment. The time of appearance of local tumors was monitored by palpation. Tumor size was measured weekly using caliper and tumor volume was calculated by the equation \(a^2 \times b/2\), where \(a\) is tumor width and \(b\) is tumor height. Data are presented as mean relative tumor volume where initial tumor volume is 1. After six weeks from tumor appearance, mice were euthanized and tumors were excised for further studies not reported here. Experimental protocols in the equation

\[\alpha \text{ is tumor width and } \beta \text{ is tumor height.} \]
animals were performed according to the Animal Welfare Guidelines of NIH (INIBIOLP's Animal Welfare Assurance No. A5647-01).

Determination of cellular protein. Total cellular protein content was measured by Bradford method (Pierce), using BSA as a standard.

Statistical analysis. Results from a representative experiment with 3-5 samples per experimental group are presented as means ± SD. Statistical significance of the data was determined by Student's t-test or one-way ANOVA followed by the Bonferroni test.

Results

Stable ablation of SCD1 expression reduces MUFA and increases SFA in total cell lipids. Previously, we reported that the knockdown of SCD1 gene expression in SV40-transformed human lung fibroblasts led to either reduction or suppression of several parameters of neoplastic behavior in vitro (20). In order to test whether ablation of SCD1 expression in human cancer cells may affect in vivo tumor formation, we generated a model of SCD1 depletion in A549 human lung adenocarcinoma cells. To do so, A549 cells were stably transfected with a plasmid containing a fragment of human SCD1 cDNA in an antisense orientation (hSCD\textsubscript{as} cells) or with the empty vector (control cells). After clonal selection, SCD activity and protein levels were estimated in SCD\textsubscript{as} cell colonies. In one selected colony (hSCD\textsubscript{as}-\textalpha), SCD activity was significantly diminished (~20%) with respect to mock-transfected A549 cells (control) (Fig. 1A). The reduction in SCD activity was caused by lower levels of SCD1 protein (Fig. 1B). The observation that stable knockdown of SCD1 expression was unable to produce cell colonies with an inhibition of SCD1 expression and activity >20% in cancer cells is puzzling and may indicate that, due to selection pressure, cells with more reduced SCD1 expression may not be viable. Nevertheless, as described below, this modest degree of SCD1 inhibition was sufficient for promoting significant changes in the biochemical and biological phenotype of cancer cells.

As a result of SCD1 reduction, the distribution of fatty acid species in total cellular lipids of SCD1-ablated cells was considerably altered (Table I). The main products of SCD1 activity, palmitoleic and oleic acids, were diminished by 23 and 17%, respectively, in hSCD\textsubscript{as}-\textalpha cells compared to controls.

<table>
<thead>
<tr>
<th>Fatty acid (%)</th>
<th>Control</th>
<th>hSCD\textsubscript{as}-\textalpha</th>
</tr>
</thead>
<tbody>
<tr>
<td>14:0</td>
<td>2.24±0.20</td>
<td>3.82±0.94d</td>
</tr>
<tr>
<td>16:0</td>
<td>24.33±0.57</td>
<td>29.17±2.33c</td>
</tr>
<tr>
<td>16:1 n-7</td>
<td>14.53±0.40</td>
<td>11.23±0.70c</td>
</tr>
<tr>
<td>18:0</td>
<td>12.02±0.38</td>
<td>13.28±1.10</td>
</tr>
<tr>
<td>18:1 n-9</td>
<td>32.61±0.76</td>
<td>27.15±1.86c</td>
</tr>
<tr>
<td>18:1 n-7</td>
<td>7.78±0.81</td>
<td>7.99±0.15</td>
</tr>
<tr>
<td>18:2 n-6</td>
<td>2.62±0.08</td>
<td>2.53±0.48</td>
</tr>
<tr>
<td>20:4 n-6</td>
<td>3.86±0.23</td>
<td>4.82±0.45c</td>
</tr>
<tr>
<td>16:1 n-7/16:0</td>
<td>0.60±0.01</td>
<td>0.39±0.01c</td>
</tr>
<tr>
<td>16:1 n-7/18:1 n-7/16:0</td>
<td>0.92±0.04</td>
<td>0.66±0.03b</td>
</tr>
<tr>
<td>18:1 /7-9/18:0</td>
<td>2.71±0.06</td>
<td>2.05±0.03b</td>
</tr>
</tbody>
</table>

aTotal cellular lipids were extracted from SCD1-depleted A549 cells and controls and their fatty acids were converted into methyl esters and analyzed by capillary gas chromatography. Results are expressed as percent distribution of fatty acids and correspond to the mean ±SD of four samples. bP<0.001; cP<0.01; dP<0.05, by the Student's t-test.
We reasoned that glucose-mediated formation of lipids reduced levels of SCD1 exhibited an impaired lipogenesis increased by 20% in the cells deficient in SCD1 with respect to control cells. Consequently, the MUFA to SFA ratio in total lipids of hSCDα-α decreased by ~30%. Increases in myristic acid (70%) and arachidonic acid (25%) were also observed in SCD1-deficient A549 cells. These results clearly indicate that the total fatty acyl chain composition of lipids in A549 cells is determined by SCD1 activity, even when these cells were grown in FBS-supplemented medium containing MUFA.

In addition, the most abundant SFA, palmitic acid, was increased by 20% in the cells deficient in SCD1 with respect to mock-transfected cells. Consequently, the MUFA to SFA ratio in total lipids of hSCDα-α decreased by ~30%. Increases in myristic acid (70%) and arachidonic acid (25%) were also observed in SCD1-deficient A549 cells. These results clearly indicate that the total fatty acyl chain composition of lipids in A549 cells is determined by SCD1 activity, even when these cells were grown in FBS-supplemented medium containing MUFA.

Reduction of SCD1 expression impairs the formation of lipids from glucose in cancer cells. Cancer cells make preferential use of glucose as a nutrient in order to satisfy the demands of both metabolic energy through aerobic glycolysis and substrates for the biosynthesis of macromolecules such as DNA, proteins and lipids (24). Importantly, glycolysis also provides metabolites such as citrate and glycerol that will be used for the de novo synthesis of cellular lipids. We have previously reported that oncogene-transformed cells with reduced levels of SCD1 exhibited an impaired lipogenesis (16). We reasoned that glucose-mediated formation of lipids could be a metabolic target for SCD1 in cancer cells. Thus, cells were traced with [14C]glucose and the formation of [14C]lipids was determined. [14C]glucose was predominantly incorporated into the phospholipid pool of both A549 cell groups (Fig. 2A and B), indicating that the main metabolic fate of de novo synthesized lipid substrates is the formation of new membrane lipids. The synthesis of phospholipids from glucose was significantly decreased in A549 cells with a knockdown in SCD1 with respect to controls (Fig. 2A), suggesting that SCD1 modulates the use of glucose-derived metabolites for the production of membrane-forming lipids in cancer cells. The observation that the inhibition of SCD1 also reduced the formation of energy storing lipids such as TAG and CE (Fig. 2B) further confirms the regulatory effect of SCD1 on the overall process of de novo lipid synthesis in neoplastic cells.

Alterations in proliferation, programmed cell death and anchorage-independent growth in SCD1-deficient A549 cells. Inhibition of SCD1 gene expression in SV40-transformed human lung fibroblasts reduces cell growth by decreasing cell proliferation and increasing programmed cell death (20). Hence, we asked whether human tumor-derived cells would be equally sensitive to SCD1 depletion with respect to cell replication and programmed cell death. As shown in Fig. 3A, mock-transfected control cells rapidly replicated during the course of the experiment whereas hSCDα-α cells proliferated at a considerably reduced rate, with increasing differences from control cells over time. In order to confirm the antiproliferative effect of SCD1 inhibition, we determined the rate of DNA synthesis using [3H]thymidine as a tracer. The levels of [3H]DNA formation were reduced in SCD1-depleted cells by ~35% with respect to controls (Fig. 3B). Since it has been reported that exogenous oleic acid increases proliferation in cancer cells (26), the synthesis of DNA in cells supplemented with 200 μM oleate was analyzed. Notably, while exogenous oleate significantly increased the incorporation of [3H]thymidine into newly synthesized DNA in the mock-transfected A549 cells, the depressed DNA synthesis in SCD1-ablated cells was not reversed by oleate treatment (Fig. 3B), indicating that an active endogenous MUFA synthesis is specifically required to sustain proliferation in the lung cancer cells.

We and others have reported that SCD1 prevents programmed cell death and lipid mediated cytotoxicity in mammalian and human cells (20,26). Therefore, we assessed the rate of apoptosis in A549 cells with stably reduced levels of SCD1. We observed that the levels of fragmentation of DNA, a measure of apoptotic damage, was increased by ~40% in hSCDα-α cells with respect to their control counterparts (Fig. 3C), further supporting a role of SCD1 in preventing programmed cell death in neoplastic cells.

The above described modifications in proliferation and death rates of A549 cells with reduced SCD1 expression led to a significant reduction in overall cellular growth. The population doubling time increased an average of 25% in hSCDα-α cells compared to mock-transfected controls. Moreover, the saturation density, another phenotypic feature typically altered in neoplastic cells, was ~40% lower in SCD1-ablated cells (data not shown). Taken together, these
observations argue for a relevant role of SCD1 in the regulation of growth and survival of lung cancer cells.

To further explore whether the alterations in cell growth and apoptosis in SCD1-ablated A549 cells were accompanied by other changes in the malignant phenotype, we tested the effects of SCD1 knockdown on anchorage-independent growth. In order to allow the development of multicellular colonies, cells were grown in soft agar for up to 4 weeks. As shown in Fig. 3D, control cells were able to produce multiple cell colonies whereas hSCDα-α cells showed a considerably diminished number of colonies, suggesting that high levels of SCD1 are needed to develop a full anchorage-independent growth capacity. Moreover, MUFA synthesized by SCD1 appear to be essential lipids for sustaining this phenotypical feature, because the addition of oleic acid to the growth medium failed to reverse the low capability of SCD1-deficient cells to form multicellular colonies in soft agar (Fig. 3D).

The Akt pathway is downregulated in lung cancer cells with reduced expression of SCD1. Akt, or protein kinases B (PKB), is a family of serine/threonine kinases that has been implicated in several aspects of cancer development, including cell proliferation, apoptosis and metabolic changes associated with neoplasia such as increased aerobic glycolysis and lipogenesis (6,27,28). Among other factors, the Akt pathway is regulated by fatty acids. Exogenously added oleic acid, the main product of SCD1 activity, has been shown to promote cellular proliferation and survival through PI3K/Akt activation in breast cancer cells, whereas palmitic acid, the main SFA in mammalian cells, has opposite effects (29). We hypothesized that the imbalance in SFA and MUFA content promoted by blockade of SCD1 expression in lung cancer cells would affect the level of phosphorylated (active) Akt. As shown in Fig. 4A, SCD1-deficient cells exhibited a decrease of ~40% in the ratio p-Akt to total Akt compared with mock-transfected control cells. We also observed a ~70% decrease in p-Akt/total Akt in SV40-transformed human lung fibroblasts with stably reduced levels of SCD1 expression with respect to the control cell line (Fig. 4B), suggesting that the regulation of Akt activation is not cell-type specific. Several biological responses to Akt activation are mediated by the inactivation of glycogen synthase kinase-3β (GSK-3β), which is phosphorylated at
Ser9 by Akt (30,31). Therefore, we estimated the level of phosphorylated GSK-3β in hSCDα cells as well as in their respective controls. As shown in Fig. 4C, phosphorylation of GSK-3β was significantly decreased in the SCD1-deficient cells compared to controls, further supporting the role of SCD1 in the regulation of the Akt activity in neoplastic cells.

To test the effect of exogenous fatty acids on Akt activation, control and SCD1-depleted A549 cells were grown for 24h in 0.1% FBS and then stimulated for 30 min with 0.1 mM palmitic or oleic acid bound to 0.5% BSA in FBS depleted media as described in Materials and methods. These conditions have been shown to be the most effective for fatty acid-induced activation of Akt in cancer cells (25). After the incubation with 0.1% FBS, the reduction in Akt phosphorylation observed in hSCDα cells with respect to control cells remained unchanged (Fig. 5). Moreover, the reduction in Akt phosphorylation persisted when the cells were incubated for 30 min with 10% FBS after 24 h of serum depletion (data not shown). Treatment with palmitic acid did not affect Akt phosphorylation in either A549 cell groups compared to BSA treatment (Fig. 5). Interestingly, exogenous oleic acid induced Akt activation in control cells but not in SCD1-deficient cells, suggesting that SCD1 activity is required for fatty acid-mediated Akt activation.

Reduced tumorigenesis in mice injected with SCD1-depleted A549 cells. Since the knockdown of SCD1 gene expression considerably impaired the in vitro neoplastic behavior of A549 cells, we investigated whether a reduction of SCD1 levels would compromise the ability of these lung cancer cells to develop tumors in mice. Hence, SCD1-deficient and control A549 cells were injected subcutaneously into athymic nude mice and tumor growth was determined for up to 150 days. We observed a remarkable increase in tumor latency in tumors originating from A549 cells with the knockdown of SCD1 expression with respect to those derived from mock-transfected A549 (Fig. 6A). In two independent experiments, control A549 cells formed tumors in 100% of the mice within two weeks after cell inoculation, whereas cells with reduced SCD1 levels produced measurable tumors after ~80 days post-injection. Strikingly, only ~40% of hSCDα cells produced measurable tumors after 60 days (experiment 1) and 80 days (experiment 2), respectively (Fig. 6A, inset), indicating that the ablation of SCD1 activity significantly delays the formation
of new tumors. Also noteworthy, SCD1-deficient cells were not able to develop into tumor formations in all mice injected with these cells. At the end of the experiments, after 150 days of inoculation with cancer cells, 20% (experiment 1) and 40% (experiment 2) of mice exhibited no measurable tumor masses (Fig. 6A, inset). Additionally, we determined whether A549 cells with the knockdown in SCD1 expression would develop tumors at a similar rate of control A549 cells. We compared the rate of tumor growth after initial tumor appearance and observed that tumor development was significantly reduced in mice inoculated with SCD1-ablated cells with respect to control cell-derived tumors (Fig. 6B), further indicating that SCD1 is required for sustaining tumor growth. Taken as a whole, these results strongly suggest a relevant role for SCD1 in early stages of tumor formation as well as in sustaining the rate of tumor growth.

Discussion

In the present study, we investigated whether the inhibition of SCD1 would modify the balance of MUFA/SFA in tumor-forming A549 human lung adenocarcinoma cells, thereby altering the production of lipid structures and the activation of transduction signals that modulate cell lipid synthesis, with a consequent impact on in vivo tumor formation. We have previously shown that SCD1 plays a significant role in the regulation of lipid synthesis, the rate of cell proliferation and survival and in vitro invasiveness in human transformed cells (4,20). Our observations that loss of SCD1 expression led to a significant reduction in the cellular content of MUFA in parallel with the increase in SFA levels, provide persuasive evidence of the relevance of SCD1 as the key regulator of fatty acid distribution in cancer cells (4,20,32). Since neoplastic cells show an enrichment of phospholipids with MUFA that leads to highly fluid cell membranes (4,8), the activation of SCD1 expression may be part of a mechanism that preserves a lipid membrane environment that would be more favorable for growth factor-mediated proliferation (33,34) as well as for cancer growth and invasiveness (35-37).
It has been proposed that SCD1 is a crucial factor in the regulation of cell proliferation, programmed cell death and fatty acid-mediated lipotoxicity (20,26,38). SCD1 expression is triggered by growth factors in normal human cells (39-41) and is also a critical player in neoplastic cell growth (20). Our observation of a notable reduction in the rate of proliferation of SCD1-ablated cells unequivocally shows that SCD1 is a main factor in the control of cancer cell growth. Furthermore, SCD1 activity is required for the proliferative effects of exogenous MUFA since exogenous oleate stimulated proliferation in control A549 cancer cells, an effect previously reported for breast cancer cells (25), whereas oleate was ineffective in reversing the decrease in cell proliferation of SCD1-deficient cancer cells. In addition, the finding of a greater rate of apoptosis in SCD1-deficient A549 cells confirms previous observations in SV40-transformed cells and in lung and colon cancer cells in which ablation of SCD1 triggered programmed cell death (20,42). Interestingly, the activation of SCD1 in A549 cells appears to be part of a safeguard mechanism to confront the toxic effects of excess endogenous and exogenous SFA. This hypothesis is supported by the finding that a greater rate of programmed cell death occurred when hSCDα40 cells were cultured in medium with sufficient oleic acid. Overload of SFA promotes metabolic conditions that trigger apoptosis in mammalian and human cells (43), hence the antiapoptotic effect of SCD1 may be likely caused by the conversion of toxic excess SFA into more harmless MUFA by the desaturase (26,38). We have previously shown that, because of their constitutively high SCD1 expression levels, human oncogene-transformed cells convert most of both exogenous and de novo synthesized SFA into MUFA (4). More to this point, we observed that when SCD1 expression was reduced in these cells, the consequent increase in SFA content was accompanied by a greater rate of apoptosis (20).

Anchorage-independent growth, a hallmark of malignant transformation, was also found significantly decreased in A549 cells with ablated expression of SCD1, further confirming that the synthesis of MUFA is essential for cancer cell invasiveness. However, unlike SCD1-ablated SV40-transformed cells (20), A549 cells with a chronic reduction SCD1 did not exhibit a total suppression of anchorage-independent cell proliferation. This discrepancy may lie in the fact that hSCDα40 cells showed ~20% decrease in SCD activity compared to ~70% reduction in the enzyme activity in SV40-cells with ablated SCD1 expression, suggesting that the alteration of the neoplastic cellular phenotype may be dependent on the degree of SCD1 inhibition.

Endogenously produced MUFA seem to be vital not only for cell growth but also for cancer cell invasiveness, since the alterations in proliferation and colony formation promoted by SCD1 ablation in A549 cells could not be overcome by supplying abundant MUFA (~200 μM oleate) in the cell culture medium. This result is in agreement with the observation in SCD1 knock out mice in which the alterations in lipid metabolism, particularly the synthesis of neutral lipids, could not be fully reversed by excess dietary MUFA (44,45). The reason for the divergent effects of endogenous and exogenous oleic acid on cell metabolism is unknown. It has been speculated that exogenous and endogenous MUFA enter separated metabolic compartments and, hence, display different intracellular regulatory roles (46). However, the presence of a mechanism for such putative fatty acid segregation awaits experimental confirmation.

Alterations in MUFA and SFA content have been associated with cancer onset and progression. Studies performed in humans show that unbalanced levels of stearic acid (low) and oleic acid (high) appear positively correlated to cancer and metastasis, although it is not known if altered SCD1 activity alone is the cause of this imbalance (47-49). Furthermore, SCD1 expression has been linked with critical events of cancer development in several previous studies in cell culture and animal models. For example, the expression of SCD1 is increased by agents that predispose to carcinogenesis, including dichloroacetic acid (15) and peroxisome proliferators (46). Moreover, it was shown in mice and rats that the background level of SCD1 expression correlates with predisposition to liver carcinogenesis; the animals with the higher levels of SCD1 were more susceptible to chemical induction of cancer than those with lower SCD1 (50). In the present study, we demonstrated for the first time the direct participation of SCD1 in in vivo carcinogenesis. Stable ablation of SCD1 expression in A549 cells resulted in a clear delay in tumor formation in nude mice as well as in a more reduced rate of tumor growth. As these cells were still able to make large tumors, albeit fewer and more slowly, it is likely that other factors involved in tumorogenesis and cancer growth are unaffected by the lack of SCD1 expression. However, since the reduction in SCD1 expression levels was significant but moderate, a more pronounced inhibition of MUFA synthesis may be able to fully suppress tumor growth. Additionally, the anticancer effect of SCD1 inhibition has also been addressed by pharmacological inhibition of SCD enzyme activity. Sterculic acid, a cyclopropene fatty acid with inhibitory effects on SCD activity, has been shown to display antitumoral effects in vitro and in a tumor model in rats (51,52) although the
specify the significance of this effect is uncertain because this compound also inactivates other desaturases (53).

Several potential mechanisms can be postulated to explain the metabolic and phenotypical changes observed in SCD1-ablated lung cancer cells that may ultimately lead to impaired tumor formation. A possible target for the effects of SCD1 deficiency is the signaling network, particularly the PI3K/Akt pathway, a central signaling pathway of clear relevance in carcinogenesis that controls numerous cellular functions, including cellular proliferation, growth, survival and mobility (54). Components of this signaling mechanism are commonly deregulated in cancer, including lung and breast cancer (28,54). The regulatory role of endogenously synthesized MUFA synthesis on Akt signaling is little known. It has been reported that phosphorylation of Akt is upregulated in muscle of SCD1-/- mice (55), whereas siRNA-mediated ablation of SCD1 expression in rat muscle cells inhibited Akt phosphorylation on Ser473 (56). In the present study, we observed that the reduction of SCD1 expression in both A549 adenocarcinoma cells and in SV40-transformed human lung fibroblasts led to a significant decrease in Akt phosphorylation. Consistent with the impaired Akt activity, SCD1-ablated cells showed a decrease in phosphorylated GSK-3ß. Interestingly, Akt signaling is differentially modulated by exogenous SFA and MUFA. Incubation with oleic acid upregulates the activity of the Akt pathway in breast cancer cells and in muscle cells (25,29,57). In contrast, exogenously added palmitic acid inhibits Akt activation by increasing PTEN or protein phosphatase 2A-like activity in endothelial and muscle cells (58,59). In agreement with the aforementioned study in breast cancer cells, exogenous oleic acid induced Akt phosphorylation in mock-transfected A549 lung cancer cells. However, our observation that, oleic acid was unable to reverse the low Akt phosphorylation status in SCD1-deficient breast cancer cells further underscores the relevant regulatory role of SCD1 in cancer cell biology.

In conclusion, this is the first direct demonstration that crucial features of malignant transformation, both in cultured cancer cells and in tumor xenografts, are determined by the level of SCD1 expression. These observations may shed new light on the role of MUFA synthesis and fatty acid composition of lipids in the control of cancer cell growth and tumor formation and lay the groundwork to develop new strategies of cancer therapy based on targeting SCD1 function.

Acknowledgements

We thank Dr. Jean-Baptiste Demoulin for the anti-SCD1 antibody, Dr. Wendie Cohick, Rutgers University for reagents and Dr. Margarita Garcia-Brago and Marisa Prinzo-Santangelo, University of La Plata School of Medicine for assistance with the experiments. We are indebted to Dr. Judith Storch, Department of Nutritional Sciences, Rutgers University for her critical review of the manuscript. This study was supported by grants from Fundacion Antorchas, Argentina and Cook College/NIAES, Rutgers University. NS was supported by a fellowship from CONICET, Argentina.

References

