Combinatorial effect of epigallocatechin-3-gallate and TRAIL on pancreatic cancer cell death

ARUNA BASU and SUBRATA HALDAR

Center for Biomedical Sciences, Department of Pharmacology, Case Comprehensive Cancer Center, MetroHealth Campus, Case Western Reserve University, Cleveland, OH, USA

Received July 11, 2008; Accepted September 10, 2008

DOI: 10.3892/ijo_00000150

Abstract. Epigallocatechin-3-gallate (EGCG), a major polyphenolic constituent of green tea, can exert growth suppressive effect on human pancreatic cancer cells by evoking apoptotic response. EGCG-induced apoptosis of pancreatic cancer cells is accompanied by growth arrest at an earlier phase of cell cycle along with depolarization of mitochondrial membrane. In this report, using MIA PaCa-2 cells as in vitro model, we demonstrate EGCG-induced cell death involves activation of caspase-8 and disappearance of intact 21 kDa Bid protein. Furthermore, exogenous expression of dominant negative caspase-8 or dominant negative FADD significantly abrogates apoptosis inducing ability of EGCG in MIA PaCa-2 cells. RNase protection assay revealed upregulation of the members of death receptor family, thus indicating the involvement of transmembrane extrinsic signaling in this polyphenol triggered pancreatic carcinoma cell death. Based on this, we examined the effect of EGCG and tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) together on pancreatic cancer cells. A synergistic increase in apoptosis and cleavage of procaspase-3 was noted. Furthermore, clonogenic cell survival assay demonstrates the significant diminishment of MIA PaCa-2 cell proliferation in the presence of both EGCG and TRAIL. This combination treatment strategy has potential therapeutic advantage for pancreatic carcinoma.

Introduction

The development of malignancies is a multi-step process that comprise of initiation, progression, invasion and finally establishment of metastasis. The multiple genetic alterations at each stage impart selective advantage over normal counterpart. In this respect, pancreatic carcinoma is no exception. During last decade, several cancer-causing genes have been found to be associated with pancreatic carcinoma (1-3). Undoubtedly, the identification of these cancer-related genes have substantially improved our knowledge on pancreatic cancer development. However, the treatment of this cancer has not advanced that much. This might be due to the lack of early diagnosis and effective chemotherapeutic treatments. In pursuit to achieve a greater survival rate of pancreatic cancer patients, new molecular targets for drug discovery, better diagnosis markers as well as development of potential chemopreventive agents are absolutely necessary at this stage.

Cancer prevention by employing naturally occurring agents against defined molecular targets is a rational approach (4-14). Catechins are the key components of tea that exert antiproliferative properties. Among them, the most abundant tea constituents in different cancer cells indicate that multiple pathways might be involved to exert its anticancer activity. The ability of EGCG to inhibit MAP kinases and P13K/AKT pathway, NF-kb and AP-1 mediated transcription or growth factor mediated signaling was implicated with its cancer preventive action (5). Moreover, several reports documented its inhibitory effect on angiogenesis as shown by suppression of endothelial cell growth and production of proangiogenic factor, VEGF (17,18).

Previously, we have observed that EGCG could invoke apoptosis in pancreatic carcinoma cells by Bax oligomerization, depolarization of mitochondrial membranes to facilitate cytochrome c release into cytosol (4). EGCG-induced stress signals also involved ROS mediated JNK activation in pancreatic cancer cells. The antiproliferative action of EGCG was associated with nuclear condensation, Poly-ADP ribose polymerase (PARP) cleavage as well as activation of executioner caspase-3.

Here we were interested to investigate the role of other caspases in EGCG mediated apoptosis. Our investigation indicates that EGCG mediated apoptosis of pancreatic carcinoma cells requires activation of both initiator and executioner caspases. In order to comprehend the mechanism of caspase-8 activation we employed RNase protection assay...
(RPA) using multi-probe template (6) set. It is evident that EGCG exposure induces the upregulation of death receptors in pancreatic cancer.

Since EGCG is able to trigger death receptor signaling, we examined the effects of EGCG and death receptor ligand TRAIL together in cell culture model. Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is a type II transmembrane cytokine and a potent inducer of apoptosis in cancer cells (6). Interestingly, polyphenol EGCG can cooperate with TRAIL to enhance the sensitivity of pancreatic cancer cells to apoptosis in vitro.

Materials and methods

Cell culture. Human pancreatic cancer cell lines MIA PaCa-2 and Hs 766T were obtained from the American Type Culture Collection (ATCC) (Manassas, VA, USA). Cells were grown in RPMI supplemented with 10% FBS and 50 μg/ml gentamicin at 37˚C in a 5% CO2 humidified atmosphere.

Apoptosis assay. Cells (5x10⁴) were seeded (in triplicate plates) in the growth medium and the next day treated with EGCG (Sigma, MO) in the presence or absence of death receptor ligand TRAIL (R&D Systems, MN) for designated time periods. Dominant negative cDNA constructs encoding caspase-8, -9, FADD (6) in mammalian expression vectors were transiently transfected (6,19,20) prior to EGCG exposure. Subsequently, cells were either processed for chromatin condensation analysis by DNA group binding dye, 4', 6'-diamidino-2-phenylindole (DAPI) fluorescence or poly-ADP ribose polymerase (PARP) cleavage analysis (21-25) by immunoblotting with monoclonal antibody against PARP (BD Biosciences, CA). For DAPI staining, cells were washed two times with phosphate buffered saline and then seeded in triplicate (10000 cells/10 cm dish). Cells were allowed to grow for additional two weeks in the absence of EGCG or TRAIL. Medium was changed every four days. Subsequently, cells were fixed with 4% buffered formalin and stained with 0.05% crystal violet for visualization and photography. The number of colonies was counted manually (26).

Results

EGCG mediated apoptosis requires activation of caspase-8 and -9. Our previous studies (4) revealed that EGCG is capable of promoting apoptosis in pancreatic cancer cells by inducing mitochondrial membrane depolarization, the down-regulation of IAP family member, XIAP as well as caspase-3 activation. In order to further understand the molecular mechanism of EGCG action on apoptosis of pancreatic cancer cells, we were interested to examine the involvement of other caspases such as caspase-8 or -9. For this purpose, MIA PaCa-2 cells were treated with EGCG for 8-24-h time period and the activity was assessed by the disappearance of the inactive forms of procaspase-8 and -9 on Western blotting (Fig. 1). The two species of procaspases observed here conform to previous reports (6). As shown in Fig. 1A, MIA PaCa-2 cells exposed to EGCG for shorter period (8 h) did not undergo significant apoptosis (PARP cleavage). At the same time period, EGCG also cannot activate caspase-8 (Fig. 1A, lane 2). However remarkable activation of caspase-8 was noted following 24-h treatment of EGCG. Similar kinetics of activation was observed for caspase-9 (Fig. 1B).

Among the two major apoptotic pathways such as mitochondrial ‘intrinsic’ and transmembrane ‘extrinsic’, the latter one comprises of activation of death receptors (DR) such as Fas, TNF receptor 1, DR4 or DR5 (6,27). Apoptotic signal transduction cascade by extrinsic pathway ensues by the recruitment of DR associated molecules such as FADD to engage initiator caspase such as caspase-8. The activation of initiator caspases such as caspase-8 can cleave a proapoptotic protein Bid and translocation of truncated Bid (t-Bid) to mitochondria can orchestrate mitochondrial events that can result in biochemical as well as morphological alterations implicated with programmed cell death. In EGCG exposed pancreatic cancer cells, we also observed Bid cleavage.
Moreover, EGCG treatment can down-regulate Survivin (Fig. 1C), that is known to inhibit caspase activation therefore leading to negative regulation of apoptosis or programmed cell death.

To demonstrate whether FADD as well as caspase-8 are required for EGCG mediated death of pancreatic cancer cells, we determined the extent of apoptosis in cells transfected with pcDNA3 vector, DN-caspase-8 and DN-FADD respectively. In contrast to empty vector, all these dominant negative constructs inhibited EGCG-induced apoptosis (Fig. 1D). We also investigated the effect of dominant negative construct of executioner caspase-9 on EGCG-induced cell death. The blocking of apoptosis by these DN constructs corroborates our biochemical data on activation of both caspase-8 and -9. Thus, EGCG-mediated demise of pancreatic cancer cells requires both caspase-8 and -9.

Up-regulation of death receptors in EGCG sensitive pancreatic cancer cells. The significant inhibition of EGCG-induced cell death by transfection of dominant negative construct of FADD (Fig. 1D) prompted us to investigate the involvement of the death receptors in this process. In general, death receptors mediate apoptosis by recruiting FADD to the oligomerized death receptor complex where FADD facilitates the binding and activation of procaspase-8 or -10. Accordingly, we performed RNase protection assay (RPA) using multiprobe template set. The multiprobe RPA systems comprise of a series of templates with distinct length and sequence of selective mRNA species. Here we used specific probes for genes encoding death receptor (DR) family members (DR3, DR4, DR5, Fas, and FasL), caspase-8. Sequences from GAPDH and L32 mRNA were used as internal controls. Quantitation of death related genes revealed by RPA analysis demonstrates 1.5-2-fold increase in of DR4, DR5 and Fas mRNA (Fig. 2A) levels in EGCG exposed MIA PaCa-2 cells. On the contrary, mRNA levels of DRs remain unaltered in EGCG challenged Hs766T cells (Fig. 2C). Of note, metastatic pancreatic cancer cells Hs766T are refractory to EGCG-induced apoptosis (4). In order to corroborate our RPA data, cellular extract of EGCG-exposed MIA PaCa-2 cells was subjected to immunoblot analysis. Western blot analyses (Fig. 2B) clearly demonstrate increased levels of members (Fas, DR5) of death receptor family in MIA PaCa-2 cells when exposed for 24 h to EGCG.

Synergistic action of EGCG and TRAIL on pancreatic carcinoma cell death. Our data indicating the ability of EGCG to up regulate death receptors in cultured pancreatic carcinoma cells led us to test whether EGCG in combination with death receptor ligand TRAIL can enhance the apoptosis inducing effect of EGCG. Tumor necrosis factor (TNF)-related death factors (Fig. 1B) which is most likely executed by activated caspase-8. Moreover, EGCG treatment can down-regulate Survivin (Fig. 1C), that is known to inhibit caspase activation therefore leading to negative regulation of apoptosis or programmed cell death.

Figure 1. EGCG mediated death of pancreatic carcinoma cells requires both initiator and executioner caspases. A-C, MIA PaCa-2 cells were exposed to 50 μg/ml EGCG for 8-24 h. Cell lysate was subjected to Western blot analysis with PARP (A), procaspase-8 (A), procaspase-9 (B), BID (B) and Survivin (C) antibodies. D, Determination of EGCG induced apoptosis following exogenous expression of dominant negative constructs of caspase-9, -8 and FADD. Cells were transfected with either vector (pcDNA3) or the indicated constructs by calcium phosphate co-precipitation method. Twenty-four hours post transfection, cell culture media was replaced with the fresh media containing 50 μg/ml EGCG. Following 24 h of EGCG treatment, cells were harvested and stained with DAPI for scoring apoptotic nuclei.
apoptosis inducing ligand (TRAIL) is a type II transmembrane cytokine and interacts with death receptors (DR4, DR5) to execute apoptosis in a variety of cancer cells (6,27,28). As evident in Fig. 3A, TRAIL can further sensitize MIA PaCa-2 cells to EGCG-induced apoptosis (>2-fold). We next sought to affirm the synergy between EGCG and TRAIL by analysis of biochemical markers such as PARP cleavage or caspase-3 activation. The combination treatment of EGCG and TRAIL was very effective for enhanced PARP cleavage as well as for the disappearance of procaspase-3 (Fig. 3B).

Combination treatment of EGCG and TRAIL diminishes survival of MIA PaCa-2 cells. As shown in Fig. 4, the potential therapeutic synergy by combining EGCG and TRAIL was noted by significant apoptosis of pancreatic carcinoma cells. Next, we were interested to examine whether the combination therapy would exert any effect on colony growth. As evident from clonogenic survival assay (Fig. 4), the number of colonies in EGCG or TRAIL treated MIAPaCa-2 cells was much higher than those formed by combination treatment (Fig. 4, panel IV vs. panels II and III). Our in vitro experiments
demonstrate that the combination of EGCG and TRAIL resulted in enhanced growth inhibition compared with EGCG or TRAIL alone.

Discussion

Cancer of the pancreas stands out as a highly lethal disease with the poorest likelihood of survival among all of the major malignancies. Pancreatic cancer is often far advanced by the time symptoms occur and the diagnosis is established. As indicated by 8-year survival rates of <5%, the successful treatment of this cancer is rare. The development of malignancies is a multi-step process that comprise of initiation, progression and finally establishment of metastasis (1-3). The multiple genetic alterations at each stage impart selective advantage over normal counterpart and might contribute to resistance to therapy of this malignancy. Targeting apoptotic signaling machinery in pancreatic cancer might be a useful approach from therapeutic/prevention standpoint.

The data presented in this report indicate that polyphenolic constituent of green tea can render pancreatic cancer cells sensitive to death receptor ligand TRAIL mediated apoptosis possibly by upregulation of members of the death receptor family. At present the molecular mechanism of EGCG-induced upregulation of cell surface Fas/DR4/DR5 is not clear. However, as observed earlier (29,30) one possibility might be AP-1 mediated transcriptional regulation of death receptors. Our previous report implicated a link between JNK pathway and EGCG mediated cell death (4). Activated JNK might lead to increase AP-1 expression (31,32). Interestingly, Fas promoter region has been shown to contain AP-1 binding site (29,30).

Further studies with dominant negative constructs of FADD, caspase-8 and -9 contribute to identify molecular components associated with EGCG mediated cell death of pancreatic carcinoma. The activation of death receptors signals the activation of caspase-8 leading to cleavage of pro-apoptotic protein Bid (Fig. 1). The interaction of truncated Bid with Bax, either in the cytosol or on the mitochondrial surface, renders conformational changes in Bax. Proapoptotic Bax then inserts itself into outer mitochondrial membrane where it oligomerizes and facilitates release of cytochrome c from the intermembrane mitochondrial space. We have previously documented EGCG-induced Bax oligomerization and cytochrome c release from mitochondria to cytosol in MIA PaCa-2 cells (4). Here we have shown the disappearance of intact Bid in EGCG treated cells (Fig. 1B). In addition, the level of Survivin, which is known to be the potent endogenous inhibitor of processed caspase-3, -7 and -9, is diminished following EGCG exposure (Fig. 1C). Our cumulative studies demonstrate the convergence of mitochondrial machinery of apoptosis with death receptor pathway in EGCG mediated apoptosis of pancreatic cancer cells. Thus, cross-talk between extrinsic and intrinsic pathway might play a pivotal role in initiating apoptotic signaling cascade by EGCG.

Based on this, we employed combination treatment of EGCG and TRAIL that diminished survival of pancreatic cancer cells MIA PaCa-2. As shown in Fig. 3, the potential therapeutic synergy by combining EGCG and TRAIL was noted by significant apoptosis of MIA PaCa-2 pancreatic carcinoma cells. In parallel, clonogenic survival assay demonstrated enhanced growth inhibition of MIA PaCa-2 cells when treated with EGCG and TRAIL together (Fig. 4).

To the best of our knowledge, we report for the first time the efficacy of combination treatment of EGCG and TRAIL that diminished survival of pancreatic cancer cells MIA PaCa-2. As shown in Fig. 3, the potential therapeutic synergy by combining EGCG and TRAIL was noted by significant apoptosis of MIA PaCa-2 pancreatic carcinoma cells. In parallel, clonogenic survival assay demonstrated enhanced growth inhibition of MIA PaCa-2 cells when treated with EGCG and TRAIL together (Fig. 4).

To the best of our knowledge, we report for the first time the efficacy of combination treatment of EGCG and TRAIL that diminished survival of pancreatic cancer cells MIA PaCa-2. As shown in Fig. 3, the potential therapeutic synergy by combining EGCG and TRAIL was noted by significant apoptosis of MIA PaCa-2 pancreatic carcinoma cells. In parallel, clonogenic survival assay demonstrated enhanced growth inhibition of MIA PaCa-2 cells when treated with EGCG and TRAIL together (Fig. 4).
Acknowledgments

This work was supported by NIH Grants CA 109181 and CA 137476. We also thank K. Haas for technical assistance.

References